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1 Introduction

This chapter is concerned with the e�cient implementation of \low-level" morphological transfor-
mations [25, 38]. The quali�er \low-level" used here means that we deal with the implementation of
transformations which serve as elementary bricks when solving practical image analysis problems.
This does not mean that these transformations are simple, or cannot be decomposed into simpler
ones: on the contrary, some of the operations considered in this chapter (e.g., skeletons, water-
sheds, propagation functions) are complex, both to de�ne and to compute! However, from a user's
perspective, these transformations share the characteristics of being easily and intuitively under-
standable: for example, watersheds extract from a gray-level image the crest-lines which are located
between the minima, top-hat transformations extract thin and light (or dark) regions, skeletons
reduce binary shapes to their medial axes, etc.

Solving a moderately complex image analysis application by morphological methods often in-
volves the concatenation of several tens or hundreds of low-level transformations [50]. This is the
reason why each of these elementary bricks should be implemented as e�ciently as possible. This
task can be approached via various algorithmic techniques, the majority of which shall be described
in this chapter. Each category of techniques is characterized by its advantages and drawbacks, and
illustrated using transformations for which it is particularly suited. For more details, see [34, 46, 37].

The present section is �rst concerned with the notations that will be used throughout the
chapter. A particular transformation, the distance function, is also recalled, since it is used as a
\leitmotiv" to illustrate how the described families of algorithms work. The characteristics one
expects morphological algorithms to be equipped with are then briey discussed.

Section 2 is devoted to the most classical morphological algorithms, namely the parallel ones.
As explained below, these algorithms turn out to be rather ine�cient on conventional computers.
A �rst step towards the implementation of fast morphological algorithms was made by introducing
the sequential methods. They are presented and illustrated in Section 3.

�Present a�liation: Xerox Imaging Systems, 9 Centennial Drive, Peabody MA 01960, USA
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Although sequential techniques serve very well for the computation of transformations such as
distance function, granulometry function or geodesic reconstruction (see Section 3), they remain
ine�cient in many cases, since they involve numerous scannings of the entire image. To get rid
of this problem, new scanning techniques have been introduced: the algorithms relying on them
are such that, throughout the computation of a given morphological transform, only those pixels
likely to be modi�ed are taken into account. Such algorithms are based on contours and can be
divided up into two families: the chains and loops propagation algorithms [34], which constitute
the topic of Section 4 and the queue algorithms [46], discussed in Section 5. Both families have
been recently introduced in the morphology world and constitute one of the best possible choices
for implementing complex transformations on conventional computers. Not only do these methods
lead to faster algorithms, they are also extremely exible and usually produce more accurate results.
We shall illustrate their use by the computation of such transformations as propagation functions,
Euclidean distance functions, skeletons and watersheds. Lastly, the conclusion summarizes the
qualities and drawbacks of these categories of algorithms and provides some guidelines as to what
methods should be used for a given purpose.

1.1 Discrete images and grids, notations

In the following, we consider binary and grayscale images I as mappings from a rectangular domain
DI � ZZ

2 into ZZ. A binary image may take only values 0 and 1, and is often reduced to the set
of its feature pixels, i.e., pixels with value 1. Many of the algorithms described below extend to
n-dimensional spaces, but for the sake of simplicity, they will always be presented for 2-D images.

The underlying grid G � ZZ
2 � ZZ

2 de�nes the neighborhood relations between pixels. G is
usually a square grid (of 4- or 8-connectivity) or a hexagonal one (see Fig. 1). NG(p) denotes the
set of the neighbors of a pixel p 2 ZZ2 according to grid G:

NG(p) = fq 2 ZZ
2 j (p; q) 2 Gg:

The discrete distance associated with G is denoted dG: dG(p; q) is the minimal length of the paths
of G connecting p to q.

In the present chapter, we mostly use the hexagonal grid (6-connectivity). Indeed, the discrete
distance it induces, called hexagonal distance and denoted d6, is more isotropic than the city-block
distance d4 or the chessboard distance d8, respectively induced by the square grid in 4- and 8-
connectivity [8]. More importantly: the hexagonal grid is a triangulation and thus satis�es the
digital Jordan property [34, page 61] according to which every nondegenerate simple loop separates
the digital plane ZZ2 into two di�erent connected components. As illustrated by Fig. 2, this is not
true for square grids and causes endless practical di�culties. For example, when dealing with square
grids, consistency makes it often necessary to use 8-connectivity for the objects and 4-connectivity
for the background (or vice-versa) [46]. For these reasons, morphologists often prefer the hexagonal
grid. Its elementary vectors are denoted ~u0, ~u1,. . . ,~u5 and are illustrated by Fig. 3. Note however
that all the algorithms described below extend to any kind of discrete grid.

The algorithms themselves are described in a pseudo-code which bears similarities to C and
Pascal. It makes use of a certain number of keywords and symbols which are summarized in Table 1.
Some shortcuts like:

Repeat until stability f. . .

or

For every pixel p0 in NG(p) f. . .
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(a) (b)

Figure 1: Square (a) and hexagonal (b) digital grids. The former one
can be considered either in 4- or 8-connectivity.

(a) (b)

(c)

Figure 2: Square grids of 4- or 8-connectivity do not satisfy the dig-
ital Jordan property, in contrast with the hexagonal grid
(c). Indeed, the simple nondegenerate loop drawn in (a) (4-
connectivity) separates the discrete plane into three connected
components whereas that of (b) (8-connectivity) does not sep-
arate anything!
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Figure 3: The 6 elementary vectors of the hexagonal grid.

=, 6=, <, >, �, � Comparisons of values

 Assignment

f, g Beginning and end of group of instructions

; End of instruction

=?, ?= Beginning and end of comments

If, then, else Logical tests

For. . . to; While; Repeat until Classical loops

true, false Logical values

Table 1: Symbols and keywords of the pseudo-code used for algorithm
descriptions.

will also be used. Instructions speci�c to the type of image scanning used by the algorithm being
discussed will be introduced as needed.

1.2 The distance function

Throughout the chapter, a particular transformation called the distance function [32, 8] is used
to illustrate the four families of algorithms described. This transformation is indeed very typical
and gives rise to several di�erent implementations. The distance function distX of a set X � ZZ

2

associates with each pixel of X its distance to the background:

distX

 
X �! ZZ

p 7�! minfdG(p; q) j q 62 Xg
(1)

The distance function dI of a binary image I is equivalent to that of its set of feature pixels,
i.e., pixels with value 1. In addition, we put conventionally: 8p 2 DI ; I(p) = 0) distI(p) = 0. An
example of distance function is shown in Fig. 4.

1.3 Estimating the quality of a morphological algorithm

The performance of a morphological algorithm may be de�ned using three main criteria: speed,
accuracy and exibility.

Speed

This is a crucial issue in the �eld of image analysis. Indeed, on the one hand, an application
program is often designed to be used routinely, either on a large amount of data (e.g., in medicine),
or daily (e.g., in quality control). It is then unacceptable for the execution time to be larger than
a speci�ed upper bound. On the other hand, even during the solution of a given image analysis
problem, many di�erent possibilities have to be considered; for each of them, many transformations
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(a) original image (b) distance function (c) level lines of this function

Figure 4: Example of hexagonal distance function.

have to be used, often repeatedly, with parameter adjustments, �lter modi�cations, etc. It is
therefore extremely important for the image analyst to have fast algorithms at his or her disposal:
it considerably speeds up this development step and even enables to explore ideas which could not
be considered otherwise. For example, until recently, the use of the watershed transformation [11, 3]
was impossible in practice because of its prohibitive computation time. However, the appearance of
the most recent specialized architectures (e.g., the Quantimet 570 of Leitz) and algorithms [46, 52]
(see Section 5) has moved it to one of the highest ranking of morphological segmentation tools.

Accuracy

An algorithm should of course give results that are as accurate as possible. In fact, most of the
time, the result is expected to be totally exact. However, the de�nition of some transformations|
like skeletons (see Section 5))|is sometimes not well adapted to the discrete framework. The
algorithms for computing such transformations should then be designed to produce results \as
close as possible" to the continous one. Morphological algorithms are also expected to avoid some
of the aberrations associated with the use of discrete grids, like the \cone e�ect" (see Fig. 5.b).
Lastly, one often tries to compute morphological transformations in an isotropic fashion. This
involves resorting to discrete distances d closer to the Euclidean one than dG (see Section 4).

p

q

(a) (b)

Figure 5: Some di�culties in discrete spaces: (a) there exist several
paths of minimal length between two pixels; (b) the set of the
pixels which are equidistant to two given connected compo-
nents may be a thick area: here, according to the hexagonal
distance, all the bold pixels (gray area) are equidistant to the
two black ones!
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Flexibility

By exibility, we mean any of the following:

� the algorithm is adaptable to other grids,

� it works in both the Euclidean and geodesic [22] cases,

� it allows one to produce several transforms close to one another,

� it is adaptable to several metrics.

Flexible algorithms are very interesting in that they spare the energy of the programmer and reduce
the implementation costs.

However, most algorithms cannot be extremely fast, accurate and exible at the same time.
Improving one of these characteristics is generally done to the detriment of the two remaining ones.
For example, increasing the accuracy of an algorithm mostly requires additional tests and compu-
tations which a�ect its speed. . . On the other hand, morphological operations are not implemented
in the same way on two di�erent computers: on specialized architectures, complex transformations
like skeletons and watersheds will be implemented using built-in thinning and thickening capabili-
ties. However, such algorithms would be terribly slow on classical computers, where their execution
times could be close to a couple of hours!

1.4 Image structures and how to access them

The most common data structure to represent and process binary and grayscale images is the two-
dimensional array of pixels, all of which are either 1, 8 or 16 bits. This type of structure is very
simple and enables a fast access to the neighbors of a given pixel, no matter what discrete grid is
used. Several attempts have been made in morphology to manipulate images stored using di�erent
data structures, e.g., quadtrees and octrees [33, 4], interval coding [29], structures stemming from
computational geometry, like polygons [30], etc. However, as explained in [46, page 22], none of
these structures is really adapted to the implementation of morphological transformations.

This is the reason why, in the following, we only consider images stored as arrays of pixels.
We always assume that the number of bits per pixel is su�cient and we do not account for edge
e�ects. Indeed, as explained in [46, chapter 2], they are usually easy to cope with by giving to
the pixels of the frame a particular value, usually 0, �1 or +1. Here, the images under study
are considered to be de�ned in the entire space ZZ2 and to take value 0 outside of their de�nition
domain, unless otherwise mentioned. Additionally, special data structures like loops or queues will
be used to manipulate these arrays of pixels e�ciently.

2 Parallel Algorithms

This category of algorithms is the most common and classical one in the �eld of morphology. A
parallel algorithm typically works as follows: given an input image I, the pixels of I are scanned and
the new value of the current pixel p is determined from that of the pixels in a given neighborhood
N(p) of p. In doing this, the following constraint is satis�ed:

The new pixel values are written in an output image J di�erent from I.
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J is then copied into I, and additional image scannings are performed until a given criterion is
ful�lled, or until stability is reached.

Since I is di�erent from J , its pixels can actually be scanned in an arbitrary order. In particular,
one can imagine parallelizing the processing on some image parts, or even on all pixels, as is done
by some specialized architectures. Hereafter, a \parallel scanning" is introduced by a sentence like:

For every pixel p of DI , do f. . .

The parallel algorithm to determine the distance function of a binary image I in grid G is given
below in a pseudo-code.

Algorithm: parallel distance function

�

(
� input: I; binary image,

� output: J; grayscale image defined on DI; J 6= I.

� Repeat until stability f
For every pixel p 2 DI f =? actual parallel scanning ?=
If I(p) = 1 then J(p) minfI(q); q 2 NG(p)g+ 1;
g Copy image J in I;
g

This algorithm is illustrated on Fig. 6. One is easily convinced that the number of scannings
it requires is proportional to the largest computed distance. More generally, parallel algorithms
usually require a large number of complete image scannings, sometimes several hundred! Therefore,
although these algorithms are particularly suited to some architectures, they are de�nitely not
adapted to conventional computers.

The basic parallel algorithms (dilations, erosions, distance function, etc) easily extend to any
grid and to n-dimensional images [16], but here again, prohibitive execution times limit their
practical interest. Moreover, the parallel computation of some more complex transformations like
skeletons [9] and skeletons by inuence zones (SKIZ) [21] is usually achived via iterations of parallel
thinnings or thickenings. These operations involve structuring elements [38], i.e., pixel templates
used as probes (see Golay's alphabet [17]). This is the reason why their adaptation to other grids
requires cumbersome neighborhood analyses. This remark is even more true when it comes time
to extend these algorithms to n-dimensional data! Furthermore, although some of them can bring
Euclidean distances into play [54], in many cases, the very local way parallel algorithms work leads
to approximative transforms (e.g., for skeletons).

3 Sequential Algorithms

In an attempt to reduce the number of scannings required for the computation of an image trans-
form, sequential or recursive algorithms have been proposed [31]. They rely on the following two
principles:
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⇓

⇒

⇒

Figure 6: Successive steps involved in the parallel computation of a dis-
tance function.

� the image pixels are scanned in a prede�ned order, generally raster (left to right and
top to bottom) or anti-raster,

� the new value of the current pixel, determined from the values of the pixels in its
neighborhood, is written directly in the same image, so that it is taken into account
when determining the new values of the as yet unconsidered pixels.

Note that here, unlike for parallel algorithms, the scanning order is essential. A number of trans-
formations which can be obtained sequentially are described in [23]. In the following, a sequential
scanning will be introduced by:

Scan DI in raster order f
Let p be the current pixel; . . .

To compute a distance function sequentially, a raster scanning followed by an anti-raster one are
su�cient [32]: out of the original binary image I, the raster scanning creates an intermediate gray-
level image, whose highest values are located in the lower left part of the connected components of
I. Each feature pixel p of I is assigned the length of (one of) the shortest path P between p and the
background, with the following constraint: every path element xy of P has either a strictly positive
vertical component (i.e., xy is pointing upwards) or a zero vertical component and a positive left
component. This is why a second scanning, of anti-raster type, is necessary to get from I 0 an actual
distance function. This algorithm is given below for the hexagonal distance:

Algorithm: sequential distance function
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� input: I, binary image;

=? The distance function is computed directly in I ?=

� Scan DI in raster order f
Let p be the current pixel;

If I(p) 6= 0 then I(p) minfI(p+ ~u1) + 1; I(p+ ~u2) + 1; I(p+ ~u3) + 1g;
g

� Scan DI in anti-raster order f
Let p be the current pixel;

If I(p) 6= 0 then I(p) minfI(p); I(p + ~u4) + 1; I(p+ ~u5) + 1; I(p+ ~u0) + 1g;
g

In all cases, the above algorithm only requires two image scannings. In comparison with the
parallel one, its thus constitutes a clear improvement! This is even more true since this sequential
distance function algorithm has been integrated into the chip PIMM1 described in [20]. In fact,
sequential algorithms often constitute one of the best possible choices. Some of the operations the
implementation of which they are best suited for are mentioned below. In addition, sequential
algorithms such as the distance function one are easily extended to n-dimensional spaces [7] and
can be adapted to better discrete distances [8, 10].

Granulometry function, grayscale dilations and erosions

Let I be a discrete binary image and let (Bn)n�0 be a family of structuring elements such that the
Bn's are the homothetics of a given convex set B. The following equations hold:

B0 = f~og
B1 = B

8n � 1; Bn+1 = Bn �B;
(2)

� denoting the Minkowski addition. Let also C denote the morphological opening with respect to
structuring element C [39]. The granulometry function of I with respect to (Bn), denoted here by
g(I), associates with each pixel p 2 DI the smallest integer k such that Bk(p) = 0. In other words:

g(I)

 
DI �! ZZ

p 7�! minfk 2 ZZ+ j Bk(p) = 0g
(3)

Just like the distance function of a binary image I is the \pile" of its successive erosions, the
granulometry function is nothing byt the pile of its successive openings with respect to the Bn's.
This means that by thresholding g(I) at value k, one simply gets the binary opening of I with
respect to element Bk�1. The histogram of g(I) provides the granulometric analysis of I. Thus,
although this transformation is not very exciting from a theoretical point of view, its great interest
comes from the fact that it is possible to obtain it very quickly by using sequential methods. For
example, the granulometry function shown in Fig. 7 was obtained in three seconds on a Macintosh
II. A very similar algorithm can be used to determine grayscale dilations and erosions by the Bn's.

Morphological shadowing

This is another case where sequential methods outperform all other techniques. The shadowing
of a grayscale image is realized through dilation by a ray of the 3-D space ZZ2 � ZZ. This is often
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Figure 7: A binary image and its corresponding granulometry function
with respect to a family of squares.

interesting for visualization purposes and can be e�ciently implemented thanks to a recursive
algorithm described in [45]. An example of morphological shadowing of a distance function is
shown in Fig. 8. One can notice in this example that the crest-lines of the distance function have
been highlighted, thereby leading to a family of methods for computing skeletons.

Geodesic reconstruction

In geodesic morphology [22], a transformation called reconstruction turns out to be of immense
interest. Given two (binary or grayscale) images f and g such that g � f (i.e., for every pixel p,
g(p) � f(p)), the reconstruction Rf (g) of f from g is obtained by dilating g geodesically under f
until stability is reached. f is called the mask image whereas g is the marker. More precisely, denote
by B the elementary ball of the grid being used. For example, B is hexagon H in 6-connectivity,
5-pixel square S1 in 4-connectivity or 9-pixel square S2 in 8-connectivity (see Fig. 9). Let �B stand
for the dilation with respect to B and ^ be the pointwise minimum. The reconstruction of f from
g is obtained by iterating the following operation until stability is reached:

g  �B(g) ^ f: (4)

In the binary case, reconstructing f from g allows us to extract those connected components
of binary image f which contain at least a pixel of g [50]. This extends to the grayscale case in
terms of peaks: as illustrated by Fig. 10, only those peaks of f that are marked by g are preserved
through reconstruction. From Eq. (4), it is straightforward to derive a parallel algorithm for binary
and grayscale reconstruction, but it is particularly ine�cient on standard equipment. Here, it is
much preferable to resort to a sequential algorithm [23, 46]: like the sequential distance function
algorithm previously described, the present one works by propagating information downwards in
a raster scanning and then upwards in an anti-raster scanning. Here however, as explained later,
these raster and anti-raster scannings have to be iterated until stability is reached (see Fig. 12).
This algorithm is described below for the hexagonal case. It works for both the grayscale and the
binary case and usually only requires around 10 complete image scannings:
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(a) original binary image (b) distance function with arti�cial shadowing

Figure 8: Shadowing of the distance function of a binary shape.

S1 H S2

Figure 9: Elementary ball in 4-, 6- and 8-connectivity respectively.
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Algorithm: sequential reconstruction

�

(
� mask: I; binary or grayscale image,

� marker: J; image defined on domain DI.

=? The reconstruction is determined in marker-image J ?=
=? Note: we assume that 8p 2 DI ; J(p) � I(p) ?=

� Repeat until stability is reached f
Scan DI in raster order f
Let p be the current pixel;

J(p) (maxfJ(p); J(p+ ~u1); J(p+ ~u2); J(p + ~u3)g) ^ I(p);
g
Scan DI in anti-raster order f
Let p be the current pixel;

J(p) (maxfJ(p); J(p+ ~u4); J(p+ ~u5); J(p + ~u0)g) ^ I(p);
g
g

f

g

⇒

Figure 10: Grayscale reconstruction of f from g.

As mentioned earlier, reconstruction is a particularly powerful morphological tool. Its several
binary applications (�ltering, hole �lling, etc) are rather well-know, but it is even more useful in the
grayscale case [50, 46]. For example, to extract the maxima of an image I, it su�ces to reconstruct
I from I�1. By algebraic di�erence between I and the reconstructed function, one gets the desired
maxima. Alternatively, the example of Fig. 11 illustrates the use of grayscale reconstruction for
picture segmentation: Fig. 11.a is an image of blood vessels in the eye in which microaneurisms
have to be detected. They are small compact light spots which are disconnected from the network
of the (light) blood vessels. To extract them, the �rst step is to perform a series of openings of
Fig. 11.a with respect to segments of di�erent orientations. These segments are chosen to be longer
than any possible aneurism, so that the aneurisms are removed by any such opening. On the
other hand, since the blood vessels are elongated and light, there will be at least one orientation at
which they are not completely removed by opening. After taking the supremum of these di�erent
openings, one gets Fig. 11.b, which is still an algebraic opening of Fig. 11.a [39]. It is used as marker
to reconstruct the blood vessels entirely. Fig. 11.c is the result of the grayscale reconstruction of
Fig. 11.a from Fig. 11.b. Since the aneurisms are disconnected from the blood vessels, they have
not been reconstructed! Thus, by algebraic di�erence between Fig. 11.a and Fig. 11.c, followed by
thresholding, the microaneurisms shown in Fig. 11.d are easily extracted.
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Microaneurisms

(a) (b)

(c) (d)

Figure 11: Use of grayscale reconstruction for image segmentation: (a)
original image blood vessels, (b) supremum of openings by seg-
ments, (c) reconstructed image, (d) microaneurisms obtained
by substracting (c) from (a) and thresholding the result.
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The above reconstruction algorithm also underscores some typical drawbacks of sequential al-
gorithms. For example, in the binary case, when the mask is a \rolled-up" particle, the number of
image scannings required for its reconstruction may be very important, as illustrated by Fig. 12.
However, only the values of a few pixels are actually modi�ed after each scanning!

X

Y

1. 2. 3.

4. 5. 6.

Figure 12: The sequential computation of a binary reconstruction in a
rolled up mask may involve several complete image scannings:
here, the hatched zones represent the pixels which have been
modi�ed after each step.

For this reason, a further step in the design of e�cient morphological algorithms consists in
considering only the pixels whose value may be modi�ed. A �rst scanning is used to detect the pixels
which are the process initiators and are typically located on the boundaries of the objects or regions
of interest. Then, starting from these pixels, information is propagated only in the relevant image
parts. The categories of algorithms described in the next two sections rely on these principles.
They both require a random access to the image pixels as well as to the neighbors of a given pixel.

4 Loop and Chain Algorithms

These methods were proposed in 1988 by M. Schmitt [34] and are based on the following simple
remark:

in a metric space (E; d), the boundary of the dilation �(X) of a set X by an isotropic
structuring element is a curve which is parallel to the boundary of X.

This is illustrated by Fig. 13. Hence, if one is able to determine quickly the curves parallel to a
given one, the calculation of isotropic dilations can be e�ciently realized. This process can then be
used to compute a large number of other morphological transformations which can be de�ned from
isotropic dilations in an incremental fashion. Among others, distance functions, which are nothing
but \piles" of erosions, are attainable this way.
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Boundary of

Boundary of
= curve parallel to
   the boundary of

X

δ(X)

Isotropic dilation

X

δ(X)

X

Figure 13: The boundary of the dilated set �(X) is parallel to the bound-
ary of X.

The �rst step of these algorithms therefore consists in a tracking of the contours of the image
I under study and in their encoding as Freeman loops [12]. A loop L is a data structure made of:

1. an origin pixel Or
L
,

2. a length l(L),

3. a list of l(L) integers of the segment [0; 5], coding the elementary vectors ~u0, ~u1, . . . , ~u5 of
the hexagonal grid.

The two extremities of a loop coincide. An example of a loop and of its encoding is shown in
Fig. 14.

P
L

l(L) = 25

Or P=
L

Directions: 4,3,5,5,4,3,0,0,1,
3,2,1,0,0,5,0,0,2,
2,1,2,4,3,4,3,

Figure 14: Example of a loop and of its encoding.

Given a loop L coding the boundary of a set X � ZZ
2, the dilated loop �L|coding the boundary

of �(X)|is determined by means of rewriting rules. These rules allow one to derive from two
successive contour elements of L a certain number (between 0 and 5) of contour elements of �L.
The dilated loop is thus obtained from L in linear time with respect to l(L). In the hexagonal case,
there are exactly six rewriting rules (up to the six rotations), which are illustrated by Fig. 15. Rule
number 4 may seem useless, but is in fact essential as soon as two successive dilations have been
performed [34].

Now, once the dilated loops are determined, they must be written in the image and the cor-
responding pixels have to be given the appropriate value. For example in the case of a binary
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⇒

Rule 0 :

⇒

Rule 1 :

⇒

Rule 2 :

⇒

Rule 3 :

⇒

Rule 4 :

⇒

Rule 5 :

Figure 15: Rewriting rules allowing to determine �L from L.

dilation, the pixels corresponding to the dilated loops have to be assigned value 1. In fact, while
the loops are written in the original image, one can detect if some of them intersect. For example, it
may well happen that two loops coming from two di�erent connected components intersect after a
dilation step, as illustrated by Fig. 16. In such cases, the overlapping parts become useless and can
be cut. The remaining loop parts are called chains: they are nothing but loops whose extremities
do not coincide, and are manipulated exactly as loops by using the rewriting rules of Fig. 15. They
can well be cut again at further steps. An example of a chain dilation is shown in Fig. 17. The
succession of operations described in this paragraph is referred to as adjustment. More precisely,
during this adjustment step, one only keeps the chain or loop parts which are located in a given
mask (set of pixels having a certain value) and gives them the appropriate value.

Loop parts
to be eliminated

Figure 16: After dilation, certain loop parts must be eliminated: this is
the adjustment step, in which chains are created. Here, the
original (two) loops are located around the gray areas, and
the parts of the dilated loops to be cut are drawn in a bold
stroke.

Dilated chain

Original chain

Figure 17: Dilation of a chain. Note that a loop has been created here,
which will be eliminated during the adjustment step.
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As an illustration, let us consider again the case of the hexagonal distance function. To deter-
mine it, we iterate dilations and adjustments of the chains until stability is reached. After each
step, the value given to pixels in the \adjusted" chains is incremented by 1.

Algorithm: distance function by chains and loops

� input: I, binary image; =? distance directly computed in I ?=

� Track the contours of IC (complement image) and encode them as loops;

� dist 2; =? variable containing the current distance ?=

� Repeat until there remain chains or loops f
Dilate the chains and the loops;

Adjust them in the mask fp 2 DI j I(p) = 1g, giving the corresponding pixels

value dist;
dist dist+ 1;
g

Like almost all the algorithms relying on this chain propagation principle, the above one only
requires two image scannings: one for the contour tracking step plus one scanning of the feature
pixels only in the propagation step (in fact here, to avoid an additional scanning, the algorithm is
designed to yield distI + 1).

Chains and loops algorithms are thus extremely fast. Moreover, after the initial contour tracking
is achieved, loops and chains may well be propagated inside a given mask: for this reason, the
present methods are particularly suited to the computation of binary geodesic transformations
[34]. In this framework, they are the fastest techniques available.

Propagation function

The previous remark is particularly true for the propagation function of a simply connected set,
where chain propagation methods provide the only known e�cient algorithm [35, 24]. Recall that
the propagation function p

X
associates with each pixel of a connected set X its geodesic distance

to the farthest pixel of X:

p
X

 
X �! ZZ

+

p 7�! supfdX(p; q) j q 2 Xg:
(5)

The algorithm for computing pX is detailed in [34] for the hexagonal case. It basically works through
the determination of a supremum of geodesic distance functions, each of these being obtained via
chain propagations. This transformation is illustrated by Fig. 18 in the case of a 4-connected square
grid. It has a very large number of practical applications, ranging from the extraction of extremities
and geodesic centers [34] to the determination of anti-skeletons [36].

Euclidean distance function and applications

Chains and loops algorithms are exible in that they can also be adapted to better distances: for
example, the dodecagonal one can be obtained by modifying the rewriting rules of Fig. 15 [34,
pages 86{89]. But it is even possible to adapt these algorithms to actual Euclidean distance [48]:
the idea is to modify the chain and loop structure as well as the rewriting rules of Fig. 15 in such a
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Figure 18: Level lines of the 4-connected propagation function of a binary
image.

way that Euclidean distances are conveyed in the image by theses structures. Previous algorithms
were of sequential type and only yielded more isotropic distances [8] or approximations of Euclidean
distance functions [10]. An example of exact Euclidean distance function is shown in Fig. 19.

Figure 19: Comparison between hexagonal and Euclidean distance function.

The same technique extend to the determination of Euclidean skeletons [27] and skeletons by
inuence zones [21]. Additionally, Delaunay triangulations [30, 6], Gabriel graphs [15] and relative
neighborhood graphs [40] can be derived from these methods, and obtained in arbitrary binary
pictures [46, 48]. Examples can be found in the chapter of the present book entitled \Graph
Morphology in Image Analysis" [18].
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Morphological transformations with arbitrary structuring elements

Other extensions of the present loop based methods include e�cient algorithms for computing
binary dilations, erosions, openings and closings with structuring elements of arbitrary size and
shape [49]. Here, chains and loops are no longer propagated in the image. Instead, the involved
structuring element is encoded appropriately and propagated along the loops representing the set
to be dilated or eroded. Combining an erosion and a dilation step allows us to determine openings
and closings equally well, as illustrated by Fig. 20.

Figure 20: Binary opening and closing by an arbitrary (and weird!)
structuring element.

To summarize, chains and loops are particularly e�cient for the computation of binary morpho-
logical transformations and give rise to the interesting extensions described above. Unfortunately,
they are not easy to adapt from one grid to another. Furthermore, they do not extend to multidi-
mensional spaces. In these respects, the algorithms based on queues of pixels which are discussed
below are much more general.

5 Algorithms Based on Queues of Pixels

In this section, we again satisfy the principle according to which only the \interesting" image pixels
are considered at each step. The image under study is regarded as a graph whose vertices are the
pixels, and whose edges are provided by the discrete grid G. Then, instead of loops and chains,
we make use of a queue of pixels to perform breadth-�rst scannings of this graph. This idea has
already proved to be particularly interesting in image analysis and morphology [41, 46].

A queue is a First-In-First-Out (FIFO) data structure, which means that the pixels which are
�rst put into it are those which can �rst be extracted. In other words, each new pixel included
in the queue is put on one side whereas a pixel being removed is taken from the other side (see
Fig. 21). In practice a queue is simply a large enough array of pointers to pixel, on which three
operations may be performed:
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P0 P1 P2 P3 P4 P5 P6

First pixel to be extracted

New pixels
added

Figure 21: How a queue of pixels works.

� �fo add(p): puts the (pointer to) pixel p into the queue.

� �fo �rst(): returns the (pointer to) pixel which is at the beginning of the queue,
and removes it.

� �fo empty(): returns true if the queue is empty and false otherwise.

The implementation of our distance function using this queue and the above operations is
accomplished as follows:

Algorithm: distance function using a queue of pixels

� input: I, binary image;

=? The distance function is computed in I directly ?=

� For every pixel p 2 DI, do f
=? detection of the pixels to be initially put on the queue ?=

If I(p) = 1 and 9p0 2 NG(p); I(p
0) = 0 f

�fo add(p);
I(p) 2;
g
g

� While �fo empty() = false f
p �fo �rst();
For every p0 2 NG(p) f
If I(p0) = 1 f
I(p0) I(p) + 1;
�fo add(p0);
g
g
g

Here again, this algorithm actually yields distI + 1, a trick which avoids an additional image
scanning.

Like the methods described in the previous section, queue based algorithms are extremely
e�cient, in both the non-geodesic and the geodesic cases. The simplicity of the above distance
function procedure is also interesting, and this characteristic is shared by most FIFO algorithms.
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They are thus more suited than the chain propagation ones to the development of procedures for
computing complex transformations like grayscale reconstruction (for an e�cient alternative to the
sequential algorithm described in Section 3, see [46, chapter 6]), skeletons and watersheds. The
latter two are briey described and illustrated below.

Moreover, contrary to the chain propagation algorithms, the present ones are extremely easy to
adapt from one grid to another, since it su�ces to modify the function that generates the neighbors
of a given pixel. Similarly, their extension to n-dimensional images and even to graphs is straight-
forward. They have been used to implement a large number of morphological transformations on
graphs [43], which have already been used in physical applications [51, 19] and are expected to be
of great interest for complex picture segmentation tasks [44]. Several ideas and algorithms about
mathematical morphology on graphs can be found in [42] or in chapter \Graph Morphology in
Image Analysis", in the present book [18].

Skeletons

The skeleton transformation is widely used in morphological image processing. It was introduced
by Blum in 1961 as the medial axis transformation [5]. The de�nition he proposed is based on the
concept of grass�re: assuming a grass�re starting from the boundary of a set X � ZZ

2 is propagating
within it a uniform speed, the skeleton S(X) of X is the set of the pixels where di�erent �refronts
meet. This is illustrated by Fig. 22. A more formal de�nition of the skeleton was then proposed
by Calabi [9], based on the notion of maximal ball: the skeleton of X is de�ned as the locus its
maximal balls for the used metrics. One can show that this skeleton can be obtained as the set of
local maxima of the distance function of X [46, 47].

X

S(X)

grassfire

Figure 22: The skeleton can be viewed as the locus of the pixels where
two �refronts stemming from the objects boundaries meet.

Unfortunately, a well-known result is that the skeleton by maximal balls, sometimes called the
true skeleton, is not necessarily connected even though the original set is! However, to be useful in
practice, skeletonization needs to be a homotopic transformation [38]: roughly speaking, it needs to
preserve the number of connected components and the number of holes in the original set, as well
as the inclusion relationships between these components and holes. The practical problem with the
implementation of skeletons consists therefore in extracting an object of unit-width which would be
as close as possible to the skeleton by maximal balls, while preserving the homotopy of the original
set. The �rst class of methods proposed in the literature are part of what we referred to in this
chapter as parallel algorithms (see Section 2). They consist in removing successive peels of the
set by means of homotopic thinnings until stability is reached [38]. For example, with hexagonal
connectivity one generally performs homotopic thinnings with respect to structuring elements L
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shown in Fig. 23 [17]. The main drawbacks of these techniques are their ine�ciency and the fact
that the resulting objects, though homotopic and of unit width, have not much in common with
skeletons by maximal balls!

Figure 23: The two-phase structuring element L and its 6 rotations.

Sequential algorithms based on the crest-lines of the distance function have also been proposed
[26, 28]. They are more e�cient than the previous ones (they work in a �xed number of images
scannings), produce accurate results and can even be extended to Euclidan distances [27]. How-
ever, as explained in [47], these algorithms require cumbersome neighborhood analyses and their
exibility is rather poor. Other methods proposed in the literature include computational geometry
based algorithms [30] as well as contour-based techniques [1, 53]. They are among the most e�cient
methods, but are very complex, have little exibility and only allow the determination of one given
type of skeleton (see [46]).

Based on the above remarks, the skeleton algorithm detailed in [47] makes use of homotopic
peelings, crest points and contours: more precisely, starting from the boundaries of X, successive
peelings are realized until stability (i.e., one-pixel thickness) is reached. These peelings|or grass�re
propagation process|are e�ciently implemented via a queue of pixels. At every step, the current
pixel p may be removed (i.e., given value 0) if and only if one of the following conditions is ful�lled:

1. p does not belong to the skeleton by maximal balls. In other words, p is not a crest-point
(local maximum) of the distance function.

2. Removing p does not modify the homotopy locally.

The �rst condition assures the accuracy of the result in that it will be a superset of the skeleton by
maximal balls. The second one means that the resulting object is homotopic; the local homotopy
checkings are realized via specially designed look-up tables [47]. In this skeletonization process,
the pixels belonging to the skeleton by maximal balls play the role of anchor points: the �refronts
stemming from the boundaries of X tend to anchor themselves on these particular points. An
example of skeletonization based on these principles is shown in Fig. 24.

Like every FIFO algorithm, the present one is particularly e�cient since only the feature pixels
are considered during the �re propagation step. For example, the skeletonization process illustrated
by Fig. 24 takes less than one second on a Sun Sparc Station 1. The resulting skeletons are also more
accurate than with most other methods: they are skeletons by maximal balls to which connecting
arcs of unit thickness have been added for homotopy preservation.

The algorithm works in the Euclidean case as well as in the geodesic one. Most interestingly, it
allows us to calculate a whole range of di�erent skeleton-like transformations whose computation
is hardly possible otherwise: this is simply achieved by using di�erent sets of anchor points. For
example, by taking as anchor points the regional maxima of the distance function instead of its
local maxima, one gets an object referred to in the literature as the minimal skeleton. Similarly, an
empty set of anchor points results in a \homotopic marking" of the set. Using as anchor points only
the local maxima of elevation greater than n yields a smoother skeleton called skeleton of order n
[47]. Any of these skeletons can then be post-processed via prunings, themselves realized via FIFO
algorithms. Fig. 25 shows a sample of these possibilities. To summarize, the present queue-based
skeleton algorithm is particularly e�cient, accurate and exible.
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(a) original image (b) distance function (c) level lines of this function

(d) skeleton by maximal balls (e) propagation of the �refront (f) �nal skeleton

Figure 24: Construction of the standard skeleton.
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(a) original image (b) standard skeleton (c) minimal skeleton

(d) homotopic marking (e) pruned skeleton (16 iterations) (f) skeleton of order 16

Figure 25: Various kinds of skeletons which may be e�ciently deter-
mined using algorithms based on queues of pixels [47]. This
example was produced using the hexagonal grid.
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Watersheds

In the last decade, increasing attention has been put on the watershed trasformation as a tool for
image segmentation [11, 3, 2, 52]. It is de�ned for grayscale images via the notion of a catchment
basin: let us regard the image under study as a topographic relief (where the gray-level of a pixel
stands for its altitude) on which it is raining on. A drop of water falling at a point p ows down
along a steepest slope path until it is trapped in a minimum m of the relief. The set C(m) of the
pixels such that a drop falling on them eventually reaches m is called catchment basin associated
with the minimum m. The set of the boundaries of the di�erent catchment basins of an image
constitute its watersheds. These notions are demonstrated in Fig. 26.

Minima

Watersheds

Catchment
basins

Figure 26: Minima, catchment basins and watersheds.

Here again, numerous techniques have been proposed to determine watersheds in digital pic-
tures. The major ones are reviewed in [46, 52]. One of the most interesting algorithms, originally
proposed by Beucher, consists of \inverting" the watershed de�nition. Consider that the minima
of the image|regarded here as a 3-D surface|have been pierced and that this image is slowly
immersed into a lake. The water progressively oods the di�erent catchment basins, and at some
point, water originating from two di�erent minima will merge, thereby connecting the correspond-
ing catchment basins. We prevent this by erecting dams at every place where connection would
otherwise occur. Once the surface is totally immersed, the set of dams thus built corresponds to
the watersheds of the initial image.

This immersion and dam erection process can now be simulated by an algorithm. The most
e�cient algorithm described in the literature makes use of FIFO breadth-�rst scanning techniques
for the actual ooding of the catchment basins [52]. A labelling of the catchment basins is also
used, which automatically prevents the connection of two di�erent basins. It has been shown that
the results provided by this technique are more accurate that those of any other method. For
example, the cone e�ect of Fig. 5.b is always avoided. Furthermore, just like almost all other FIFO
algorithm, the present one extends to any grid and any dimension in a straightforward manner.

This algorithm dramatically reduces the computation times required for extracting watersheds.
On conventional computers, previous approaches typically needed up to a couple of hours! The
present one takes around 5 to 10 seconds on a Macintosh II, for a 256 � 256 image, thus opening
the door to powerful segmentation methods in inexpensive software-based systems.

Let us conclude this section by an example of application of the present algorithm. We consider
here Fig. 27.a: it is part of a series of successive images of the same scene, and the problem is to
recover the motion of the camera. One of the approaches taken to solve this motion estimation
problem consists of decomposing the images into regions and to match these regions over successive

25



time frames [13]. Performing this decomposition by means of watershed techniques turns out to
provide meaningful regions, which are then easily matched from one image to the next one [14].
Following the methodology described in [50], the watershed tool is applied to the morphological
gradient of the original image (Fig. 27.c). In fact, to avoid oversegmentation, the watersheds of
the gradient are constrained by a marker image. The markers are connected components of pixels
belonging to each of the regions to be extracted, and are obtained in this case from the intensity
\domes" and \basins" of the original image (see Fig. 27.b). The result of this constrained watershed
transformation is the highest watershed lines of the gradient which are located between two markers
(Fig. 27.d). The entire segmentation process takes approximately 5 seconds on a Sun Sparc Station
2.

6 Conclusion and Summary

Table 2 summarizes the qualities and drawbacks of the families of algorithms which have been
briey reviewed in this chapter. Now, in practice, what algorithm should be chosen to implement
a given transformation in a given environment? Of course, there is no absolute answer to this
question. However, the following guidelines can be proposed:

� Parallel algorithms should generally be avoided, unless running on specialized architectures.

� Sequential algorithms constitute one of the best choices to implement grayscale reconstruc-
tions, grayscale dilations and erosions with some structuring elements, and granulometry
functions.

� Chain and loop methods should be chosen whenever binary transformations are concerned.
They are indeed the fastest in this case, particularly for geodesic operations (reconstruction,
geodesic distance function, hole �lling, labelling, etc), and provide the only known e�cient
propagation function algorithm.

� FIFO algorithms will be preferred in all other cases, and in particular in the following ones:
geodesic transformations in square grids, n-dimensional or graph morphology, complex trans-
formation like skeletons, SKIZ and watersheds.

Family of algorithms speed accuracy (if
appropriate)

adaptation
to other
grids

development
ease

hardware
implementation

parallel x xx xx xxx xxxx

sequential xx xx xx xx xxx

loops and chains xxxx xxx x xxx x

queues xxx xxx xxxx xxxx x

Table 2: Respective qualities of the various families of algorithms.

Clearly, the last two families are going to become increasingly important in the future. Re-
gardless of accuracy and exibility considerations, chain or queue algorithms are often faster on
conventional computers than parallel algorithms on specialized hardwares! Now, a few years after
the introduction of the parallel morphological algorithms, the �rst specialized hardwares were built
on these principles. Between the publication of the sequential distance function algorithm (1968)
and its �rst hardware implementation (1989), more than twenty years have elapsed. Let us hope
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(a) (b)

(c) (d)

Figure 27: Example of a watershed segmentation: (a) original image,
(b) marker image, (c) gradient image, (d) �nal segmenta-
tion obtained via watersheds of the gradient controlled by the
markers.
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that we will not have to wait twenty more years to see the �rst hardware realizing queue based
morphological operations. Indeed, this would probably allow us to compute complex morphological
transformations in just several hundredths of a second.
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