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Abstract
Reconstruction is part of a set of morphological image trans-
formations [4] referred to as geodesic [1]. In the binary case,
it simply extracts the connected components of a binary im-
ageI which are “marked” by an imageJ contained inI .
Reconstruction can be extended to the grayscale case, and
the first goal of this paper is to provide a formal definition
in this framework. Available techniques to compute recon-
struction are then reviewed, and a new powerful algorithm,
using both sequential [3] and queue-based [8] methods, is
introduced. Finally, applications of grayscale reconstruction
to image filtering and segmentation illustrate its interest in
image analysis.

1 Introduction
1.1 Reconstruction for binary images

Let I andJ be two binary images defined on the same dis-
crete domainD and such thatJ � I , i.e.,8p 2 D; J(p) =
1 =) I(p) = 1. J is called themarkerimage andI is the
mask.Let I1, I2, . . . ,In be the connected components ofI .
Definition 1.1 The reconstruction�I(J) of maskI from
marker J is the union of the connected components ofI
which contain at least a pixel ofJ .

Alternaltively, binary reconstruction can be presented us-
ing the notion ofgeodesicdilation [1]. Given a setX (the
mask), the geodesic distancedX between two pixelsp and
q in X is the length of the shortest paths ofX joining p and
q. One can then define geodesic dilations as follows:
Definition 1.2 The geodesic dilation of sizen � 0 of a set
Y � X withinX � ZZ

2 is the set of the pixels ofX whose
geodesic distance toY is smaller or equal ton:

�
(n)
X

(Y ) = fp 2 X j dX(p; Y ) � ng:

Geodesic dilation of sizen can be obtained by iteratingn

�This research was carried on while the author was affiliated with the
Harvard Robotics Laboratory.It was supported by theNSFunder Grant
MIPS–86–58150, with matching funds fromDECandXerox.

elementary geodesic dilations:

�
(n)
X

(Y ) = �
(1)
X

� �
(1)
X

� : : : � �
(1)
X| {z }

n times

(Y ):

Fig. 1 illustrates successive geodesic dilations of a marker
inside a mask. The elementary geodesic dilation can itself
be obtained via an elementary dilation followed by an inter-
section:�(1)

X
(Y ) = (Y � B) \X (B being the unit ball of

the considered grid).

Figure 1: Successive geodesic dilations.

When performing successive elementary geodesic dila-
tions of a setY inside a maskX , the connected components
of X whose intersection withY is non empty are progres-
sively flooded. We can thus state:
Proposition 1.3The reconstruction ofX from Y � X is
given by:�X(Y ) = limn!+1 �

(n)
X

(Y ).
1.2 Grayscale reconstruction
As stated in [4, 5], any increasing transformation fromZZ

2

to ZZ2 can be extended to grayscale images. By increasing,
we mean that is such that8X;Y � ZZ

2; Y � X =)
 (Y ) �  (X): In order to extend to a grayscale imageI ,
it suffices to consider the successive thresholdsTk(I) of I :
Tk(I) = fp 2 DI j I(p) � kg, which are said to constitute
the threshold decompositionof I [2]. They obviously sat-
isfy: 8k; Tk(I) � Tk�1(I). Thus, when applying to each
of these sets, the inclusion relations are preserved. is thus
extended to grayscale images as follows:

8p;  (I)(p) = maxfk 2 [0; N � 1] j p 2  (Tk(I))g:

Binary reconstruction being obviously increasing, the fol-
lowing definition can thus be proposed:



Definition 1.4LetJ andI be two grayscale images defined
on the same domainD, taking their values in the discrete
setf0; 1; : : : ; N � 1g and such thatJ � I (i.e., for each
pixel p 2 DI ; J(p) � I(p)). The grayscale reconstruction
�I(J) of I fromJ is given by:

�I(J)(p) = maxfk 2 [0; N � 1] j p 2 �Tk(I)(Tk(J))g:

Fig. 2 illustrates this transformation. Just like binary re-
construction extracts the marked components of the mask,
grayscale reconstruction extracts thedomesor peaksof the
mask which are marked by the marker-image.

f

g

⇒

Figure 2: Grayscale reconstruction of maskf from markerg.

Unfortunately, this definition does not provide any inter-
esting computational method to determine grayscale recon-
struction in digital images. Indeed, even when a fast bi-
nary reconstruction algorithm is used, one has to apply it2n

times to determine grayscale reconstruction for images on
n bits! Therefore, we now present this transformation using
geodesic dilations.

Following the threshold decomposition principle, the ele-
mentary geodesic dilation�(1)

I
(J) of grayscale imageJ � I

“under” I is given by:�(1)
I

(J) = (J �D)^ I . In this equa-
tion,^ stands for the pointwise minimum andJ �D is the
dilation of J by flat structuring elementD [4]. Grayscale
geodesic dilation of any size can be defined similarly, lead-
ing to a second definition of grayscale reconstruction:
Definition 1.5The grayscale reconstruction�I(J) of I from
J is obtained by iterating grayscale geodesic dilations ofJ
“under” I until stability is reached, i.e.:

�I(J) = lim
n!+1

�
(n)
I

(J) = lim
n!+1

�
(1)
I

� �
(1)
I

� : : : � �
(1)
I| {z }

n times

(J):

2 Algorithms
Many different algorithms have been proposed to compute
binary reconstruction. For a review of the major ones, see
[7]. According to def. 1.4, using these algorithms on the
successive thresholds of grayscale images allows one to
compute grayscale reconstructions, but in an extremely in-
efficient fashion. A better algorithm can be derived straight-
forwardly from def. 1.5 above, but is still very slow, since
the marker and mask images have to be entirely scanned at
every step of the process, until stability. This may some-
times involve several hundreds scannings [7].

A better technique, described in [6, 7], is to adapt the
standard sequential [3] binary reconstruction algorithm to
the grayscale case. The resulting algorithm usually only re-
quires a few image scannings (a dozen typically) until sta-
bility is reached, and is therefore reasonably fast. However,
like several other sequential algorithms [8], it does not deal
well with “rolled-up structures” and may require several en-
tire image scannings in which the value of only very few
pixels is actually modified.

A grayscale reconstruction algorithm using queues of
pixels [8] was proposed in [6]. It is based on the notion
of regional maxima: A regional maximumM of image
I is a connected components of pixels with a given value
h, such that every pixel in the neighborhood ofM has
a strictly lower value. LetR(I) be the image such that
R(I)(p) = I(p) if p belongs to a regional maximum, and
0 otherwise (for their extraction, see [6]). The following
proposition holds:
Proposition 2.1Let I andJ be two grayscale images such
thatJ � I . Then�I (J) = �I(R(J)).
For a proof, see [7]. The algorithm described in [6] initial-
izes the queue with the pixels on the boundaries of the re-
gional maxima and propagates their values under the mask
image using the queue for breadth-first scanning.

Although faster than the previous techniques, this algo-
rithm is slown down by the initial computation of the re-
gional maxima of the marker image. Furthermore, un-
like for its binary counterpart, some image regions may be
scanned more than once during the breadth-first scanning
step. This happens, e.g., when two regional maxima ofJ
with different gray-level are next to each other. The sequen-
tial grayscale reconstruction algorithm does not have this
drawback, but after the first two passes, it requires several
additional scannings in which only few pixels are modified.

These two algorithms have therefore complementary
drawbacks and advantages, and this is the motivation for the
hybrid algorithm introduced now: the idea is to start with the
two first scannings of the sequential algorithm. During the
second one (anti-raster), every pixelp such that its current
value could still be propagated during the next raster scan-
ning, i.e. such that9q 2 N�

G
(p); J(q) < J(p) andJ(q) <

I(q), is put into the queue. The last step is then identical
to the propagation stel of the above queue-based algorithm.
However, the number of pixels to be considered is consid-
erably smaller than previously and overlaps almost bever
occur:

� mask:I, marker:J ,
p

p

N
+
G
(p) andN�

G
(p) in 8-connectivity� ScanDI in raster order

Let p be the current pixel;
J(p) 

�
maxfJ(q); q 2 N+

G
(p) [ fpg

�
^ I(p);

� ScanDI in anti-raster order



Let p be the current pixel;
J(p) 

�
maxfJ(q); q 2 N�

G
(p) [ fpg

�
^ I(p);

For everyq 2 N�

G
(p)

if J(q) < J(p) andJ(q) < I(q) then
Putp in queue; BREAK;

� Until queue is empty, do
p first pixel of queue;
For every pixelq in the neighborhood ofp

If J(q) < J(p) andI(q) 6= J(q)
J(q) minfJ(p); I(q)g;
Putq in queue;

This algorithm offers the best compromise for computing
grayscale reconstructions. It takes advantage of the strong
points of both previously described algorithms, without re-
taining their drawbacks. For almost any kind of input im-
ages of size256 � 256, its execution time is less than1=2
second on aSun Sparc Station 1.In addition, the algo-
rithm works equally well for binary images and its exten-
sions to any kind of grid and to multi-dimensional images
are straightforward.

3 Applications
Grayscale reconstruction is of tremendous practical interest
in image analysis and a fast algorithm to compute it makes it
even more useful. Among other application, we may quote
(for more details, refer to [6, 7, 8]):
� Filtering by opening followed by reconstruction: this has
the effect of preserving the structures not entirely removed
by opening, wiping out the others [5].
� Extraction of maxima, domes and crests in grayscale im-
ages: by reconstructing an imageI from I �h, one gets the
so-calledh-domes [7]; unlike top-hat transformations [4]
their extraction does not involve any size or shape criterion,
but only a contrast parameter.
� Watershed segmentation: grayscale reconstruction is at
the basis of almost every preprocessing required prior to
the use of watersheds for segmentatoin (see the marker-
controlled segmentation approach presented in [6, 8]).
� “Top-hat” by reconstruction: on Fig. 3(a), microaneurisms
have top be extracted from a picture of eye blood vessels.
They are small and compact, so that unlike the vessels, they
are entirely removed by a maximum of openings with seg-
ments (Fig. 3(b)). Since they are also disconnected from
the vessels network, one does not recover them after recon-
struction of Fig. 3(a) from Fig. 3(b) (see Fig. 3(c)). After
subtracting 3(c) from 3(a) and thresholding, we get the de-
sired aneurisms (Fig. 3(d)).

4 Summary
Grayscale reconstruction has been formally defined for dis-
crete images. A brief summary of the existing techniques to
compute it has been provided, and a new “hybrid” algorithm

Microaneurisms

(a) original image (b) maximum of openings

(c) reconstruction (d) segmented aneurisms

Figure 3: Extraction of microaneurisms.

was introduced, which is an order of magnitude faster than
any other algorithm. Some of its application to image filter-
ing and segmentation have been listed. They illustrate the
interest of this transformation and it is hoped that thanks to
this paper, the use of grayscale reconstruction will become
increasingly popular.
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