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Abstract

This paper presents a correspondence method to determining motion displacement �elds
in sequences of intensity images where the motion tokens to be matched between consecutive
image frames are 2-D regions. These regions contain perceptually important image features.
The computation of the 2-D image velocity �eld is done in three stages: region extraction, re-
gion matching, and velocity smoothing. The emphasis of the work is on the region extraction
part, where four possible approaches are developed and compared. Thus, in each image frame
the regions are extracted either from the sign representation of the image convolution with a
Laplacian of a Gaussian, or by thresholding the output of morphological image transformations
for peak/valley detection, or by performing morphological graylevel watershed segmentation,
possibly followed by further segmentation of the resulting binary regions via the watershed of
their distance transforms. For region matching, a general correspondence approach is applied to
the region tokens by using similarity criteria based on region features. Image velocities are then
identi�ed as the spatial vector displacements among centroids of corresponding regions. The
computation is completed by smoothing the initial velocity �eld with a spatio-temporal vector
median �lter. The performance of these four approaches for region extraction and matching is
evaluated in the presence of noise. Overall, the proposed region-based methods for computing
image velocities are simple, e�cient, less computationally complex than intensity correlation
methods, and (as our experiments on real images indicate) more robust than iterative gradient
methods especially for medium or long-range motion. In addition, the developed morpholog-
ical region extraction methods provide several robust 2-D image features to be used in visual
correspondence problems.

Index terms: computer vision, motion analysis, correspondence, mathematical morphology.
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1 Introduction

Motion analysis is a major task of computer vision systems that attempt to extract information
from moving imagery. It deals with general problems such as the detection and measurement of 2-D
image motion and/or the recovery of the 3-D motion and shape of object surfaces given a spatio-
temporal signal I(x; y; t) of 2-D intensity images. There has been voluminous amount of work on
visual motion, and some reviews or detailed discussions on this topic include [2, 10, 11, 13, 23].
When objects are being imaged through a camera (or a human retina) moving relative to the objects,
the apparent motion of brightness patterns corresponds to a 2-D image velocity �eld (often called
`optical ow'). This is represented by a 2-D spatio-temporal vector �eld (vx; vy), where vx; vy denote
velocities in x; y direction. For discrete-time sequences of image frames an average value (over the
interframe time sampling period �t) of this velocity �eld is provided by the displacement vector
�eld (divided by �t) whose vectors determine the correspondences among image points of successive
image frames. In some cases the image velocity �eld may not generally be equal to the true 2-D
motion �eld that results from projecting the 3-D motion onto the image plane. Nevertheless, due to
its accessibility and the rich information it contains [11, 16, 19, 23, 41, 48], the measurement of the
image velocity �eld is very important in motion analysis. For instance, there are many approaches
to 3-D motion and shape recovery which assume that 2-D velocity data (sparse or dense) have been
obtained in advance; examples include [15, 47, 48, 49]. 2-D velocities can also be used to track
the motion of objects projected onto the image plane. In addition, measuring the displacement
�eld is necessary to provide the necessary motion compensation for the interframe prediction and
interpolation tasks encountered in video data compression; examples can be found in [14, 29] and
the review [28].

The major approaches to computing 2-D image velocity �elds can be roughly classi�ed as either
using gradient models or correspondence of motion tokens. Most gradient models are based on
some constraints or relationships among the image spatial and temporal derivatives. Examples
include the optical ow constraint dI=dt = 0 () @I

@x
vx +

@I
@y
vy = �@I

@t
proposed in [12], a least-

squares approximation of optical ow by a�ne vector �elds using shape gramians developed in
[6], and various smoothness constraints used to derive optical ow along contours [9, 50]. Another
broad class of gradient-based methods are all the pixel-recursive algorithms as in [29], popular
among video coding researchers. Although gradient models are analytically more tractable, may
lead to iterative local image operations, and can provide spatially dense velocity estimates, they
are computationally intensive, apply only to short-range motion, and are highly susceptible to
noise due to the frequent usage of derivatives and their discrete approximations. By contrast, the
correspondence methods are more immune to noise and can be also applied to both short- and long-
range motion. They are based on matching and tracking over time simple tokens (sets of elementary
image features) in one image frame with their counterparts on the same object in subsequent frames.
These tokens need not have more than a 2-D structure as argued in [41] and usually are any of
the following three kinds: (i) isolated points, e.g., corners, curvature inection points, or other
interesting points representing important image features [4, 40, 41]; (ii) short curves, e.g., edges or
other line segments [9, 23, 41, 50]; (iii) blob-like regions representing small connected parts of the
image with similar brightness or texture [7]. The main di�culty of all correspondence methods lies
in reliably extracting good features and tracking them. After the correspondence has been solved,
the resulting displacement vectors between corresponding tokens serve as (scaled) sparse estimates
of the velocity at these tokens.

This paper presents a correspondence approach to measuring the 2-D image velocity �eld by
using regions as the simple tokens to extract from each image frame and track over time. In recent
research considerable attention has been given to edges (e.g., zero-crossings of the Laplacian of
a Gaussian [24]) as being perhaps the most desirable features to match in binocular stereopsis or
motion analysis [23]. However, without doubting the general usefulness of edges as important image
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features, we view the region matching as more robust than edge matching, because noise perturbs
the coherence of a region less than its boundaries (edges). This was demonstrated by Nishihara [30]
who solved the correspondence problem for binocular stereo by cross-correlating the binary regions
(sign areas) bounded from the zero-crossing contours of the band-pass �ltered images r2G�I. (r2

is the operator @2=@x2 + @2=@y2, G(x; y) = exp[�(x2 + y2)=2�2]=2��2 is a Gaussian function with
standard deviation (scale parameter) �, and � denotes 2-D convolution.) Mayhew and Frisby [25]
have also found that intensity edges cannot by themselves disambiguate some correspondences in
binocular stereopsis unless they are supplemented by region features such as intensity peaks and
valleys. Additional strong evidence for the possible e�ectiveness of blob-like regions is provided by
the psychophysical experiments of Ramachandran and Anstis [31], which demonstrated that the
human visual system during its �rst short-term phase of perceiving apparent motion is more likely
to detect correspondences between regions of similar brightness or texture before it detects sharp
outlines or edges.

Motivated by all the above evidences, in this paper we study and compare several region-based
approaches to motion correspondence. As Figure 1 summarizes, the common procedure in all our
approaches consists of three stages: (I) Region Extraction: This part (discussed in Section 2), which
carries the main emphasis of our paper, deals with pre-cleaning the image, extracting the regions,
and cleaning these regions. We study four di�erent approaches to extracting regions: sign repre-
sentation of the image convolution with r2G, morphological peak/valley detectors, morphological
image segmentation by watersheds, and watershed segmentation of distance functions of binarized
regions resulting from segmentation of graylevel images. Although the sign of the convolution with
r2G o�ers reasonably e�ective regions, the operators and algorithms of mathematical morphology
for feature extraction and segmentation [22, 27, 35, 43] have the advantage of providing multiscale
region features without blurring their boundaries. Thus, our preferance for using morphological
feature extraction and segmentation approaches to extract regions is based on the inherent ability
of morphological operators to easily relate to shape and hence to provide regions that may corre-
spond to more easily identi�able subparts of the moving object. II) Region Matching (discussed
in Section 3), where Ullman's general correspondence theory [41] is applied to region tokens by
using several similarity criteria for matching. These criteria are based on a more extended set of
region features than the a�nity measure used in [41]. After the region matching, velocity esti-
mates are then identi�ed as the spatial displacements among centroids of corresponding regions.
III) Velocity Smoothing (discussed in Section 3), where the 2-D velocity data are smoothed with a
spatio-temporal vector median �lter.

Finally, Section 4 discusses the main conclusions reached via some numerical experiments we
conducted to compare the performance of the four approaches under salt-and-pepper and white
Gaussian noise.

2 Region Extraction Algorithms

In this section, we are concerned with the extraction of the regions which are then to be matched
over time in the image sequence. We de�ne as regions connected sets of pixels (x; y) which are
either subsets of the spatial image domain with similar brightness or contrast, or are bounded by
some contour of maximum intensity gradient points, or belong to the same intensity peak/valley.
The present task can be viewed as (and in the watershed approaches it is actually) an image
segmentation. Our present goal is not necessarily to obtain a very precise segmentation of the image
under study: the only important considerations are that the obtained regions should approximately
convey the aforementioned types of information, be easily and accurately matchable from one image
to the next one, and be extractable with e�cient algorithms. Thus, the segmentation process needs
not necessarily be very precise. The scale (region size) at which the segmentation occurs is also
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  Region Extraction   Region Matching   Velocity Smoothing

(a) Major steps of region-based visual motion correspondence

    Image     Top-Hat Peak and Valley Detection

    Sign Representation of Edge Operator

    Watershed Segmentation

    Watershed Segmentation followed by 
       Binary Region Segmentation

    Region Cleaning
 Smoothing

(b) Details of region extraction

Figure 1 : Motion analysis system

an important consideration with conicting issues: Small scale regions provide denser velocity
estimates, but their matching may be more di�cult (due to the large number of possible matches)
and hence less reliable. Larger scale regions provide more robust features and velocity estimates,
but lead to sparser velocity �elds. Of course, an \optimum" region size will depend on the particular
application and type of moving imagery. Our algorithms provide the ability to control the region size
through either the smoothing �lters related to edge/peak/valley detection or the marker features
needed by the watershed segmentation. In this section, four di�erent region extraction techniques
are considered:

� sign representation of convolution with Laplacian of Gaussian

� morphological peak/valley extraction via top-hat transformation

� watershed segmentation with markers

� watershed segmentation followed by binary region segmentation

The above approaches should also be as nonspeci�c as possible: we do not want to develop highly
sophisticated procedures which will only provide good results for a particular image type. On the
contrary, our motion estimation problem has to be considered in its full generality. This is the
reason why we purposely do not take into account any characteristics speci�c to our set of test
images.

The above segmentation approaches are described in sections 2.2 to 2.5. Prior to their execution,
a �rst step consisting of an image smoothing is used, which is described in section 2.1. Additionally,
the results provided by each of the algorithms described below need to be cleaned before applying
the matching procedures. This region cleaning step is explained in section 2.6.

2.1 Image Smoothing

To avoid spurious regions due to small-scale noise that may a�ect the region extraction algorithms,
we pre-smooth each image frame by using a morphological �lter belonging to the category of the so-
called Alternating Sequential Filters (ASFs). These operators are based on iterations of alternating
openings and closings by structuring elements of increasing size. However, ASFs tend to preserve

4



the edges better than median-type �lters, yield a �xed point (i.e., a smoothed image invariant to
further applications of the �lter) in a single pass, and provide much more exibility and control.
They have been initially described and used in [38]. A single-scale version of ASFs was analyzed in
[21] and was closely related to median �lters. Their general theoretical properties have been formally
studied in [36, ch.10]. Among others, the good behavior of these �lters in the presence of noise is
now well-known [33, 34, 37, 39]. In fact, they are somewhat the \general-purpose" smoothing �lters
of mathematical morphology; i.e., when the characteristics of the noise are unknown, or when the
segmentation problem is not clearly speci�ed, the ASFs is a very good choice to try �rst because
they can provide sequential smoothing at multiple scales.

For these reasons, ASFs seem to be particularly suited to our present problem. Here, to be even
more general, we chose as building blocks for these �lters a maximum of openings by line segments
of di�erent orientations, and the dual closing. This allows us to better preserve the line-type image
structures, which usually convey important information. More speci�cally, let us denote by Si,
i = 1; ::; 4, the line segments shown in Figure 2. If I(x; y) is a single-frame image signal, let I 	B,
I � B, I�B = (I 	 B) � B, and I�B = (I � B) 	 B denote the morphological erosion, dilation,
opening, and closing of I by a structuring element B (a set of pixels); for properties and applications
of these operations see [21, 22, 35, 37]. If each Si is viewed as a unit-size element, then

nSi = Si � Si � � � � � Si| {z }
n times

denotes its corresponding element of size n = 1; 2; 3; ::: The openings n and closings �n that make
up the �lter are the following:

n(I)(x; y) = max
i2[1;4]

fI�nSi(x; y)g (1)

�n(I)(x; y) = min
i2[1;4]

fI�nSi(x; y)g (2)

S1 S2 S3 S4

Figure 2 : Structuring elements Si for image smoothing.

In the actual �lter, we have to start either with an opening, or with a closing. According to
our tests, this does not change much the resulting image in most cases, so we arbitrarily decided
to start with a opening. The �lter  we ended up using is therefore given by the following cascade
(i.e., operator composition)

 = �nn : : : �22�11 (3)

The maximum size n of the �lter  is an important parameter. In some cases, the critical size can
be determined either from the noise statistics [33], or from morphological size distributions [34], or
through the quality of the resulting segmentation. Here, we do not address such problems and �x
the maximum size to 3.

2.2 Sign Representation of r2G � I

Regions are the complementary representation of edges. Hence, they can be obtained from edge
operators. Speci�cally, the edge detection operation [24] r2G � I is applied to each image frame
I. Binary edge information is obtained by the zero-crossing contours of the operator's output. For
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each image frame, the regions are identi�ed as the connected subsets of the image plane whose
boundaries are these edge contours. Thus, the set of image pixels at which this edge signal has a
positive sign identi�es the collection of positive regions, and its set complement yields the negative
regions. There is a trade-o� in selecting a value for the scale parameter �. For large �, the regions
are large, and their number per frame is small. To achieve dense velocity estimates, small values of
� are preferred. On the other hand, to achieve a matching that is more robust and less susceptible
to noise, a larger � is preferred. In our experiments we implemented the r2G as the di�erence
of two Gaussians, one (the excitatory) with � = 2:25 and another (the inhibitory) with � = 0:75;
the size of the convolution kernel was 9� 9 pixels. Examples of extracted regions are shown later.
The region extraction process is completed by labeling connected components, where at each time
tk, each positive (or negative) region has been identi�ed as a connected component of the binary
image representing the positive (or negative) sign of r2G � I(x; y; tk).

Among various alternative edge operators whose sign representation can provide region features,
the r2G � I approach is chosen mainly because it gives closed edge curves. However, there are also
several morphology-based edge operators with the same property [5, 18, 35, 42]. For example, in
[8] we have also experimented with regions extracted as the sign representation of edges obtained
via the morphological \Laplacian"-like edge operator of [42]. The matching results based on these
nonlinear edge operators were very similar with those obtained using the linear r2G operator.

2.3 Binarized Peak/Valley Detection Transformations

If I is the intensity image at some time frame, two morphological operators that can extract its
intensity peaks and valleys, respectively, are the opening and closing residuals [26, 35] (known as
\top-hat" transformations and due to Meyer):

Peak(I) = I � (I�B) � 0 (4)

V alley(I) = (I�B)� I � 0 (5)

where B is a at convex structuring element. The opening I�B smooths I by cutting down its
peaks; hence the residual signal Peak(I) contains only the peaks of I. The shape and size of B
control the shape and maximum size of of the binary regions of support of these peaks. Similarly for
the valleys. In our experiments, we use as structuring element an octagon S = f(x; y) : x2+y2 � 5g
of size 2; i.e., B = S � S. Note that the resulting element B has the same size as the truncated
impulse response for the r2G � I operation used in Section 2.2, so that both the linear smoothing
via the Gaussian convolution and the morphological smoothing via the opening or closing refer to
the same scale.

The value of Peak(I) at a certain pixel location determines the contrast (or the \strength")
of the peak at that location. We produce binary peak regions by thresholding at level T , i.e.,
by setting all pixels (x; y) at which [Peak(I)](x; y) � T equal to 1 and 0 elsewhere. It is not a
simple task to �nd an optimum T for general-purpose detection. In the approach we used, all the
nonzero values of the peak signal Peak(I) were sorted for each frame and T was selected as the 70%
percentile value. (The value 70 was experimentally found to give reasonable results.) Similarly,
the binary valley regions result from thresholding the valley signal Valley(I) at T . Figures with
examples from the above peak/valley region extraction will be shown later.

2.4 Watershed Segmentation

The techniques described in this section and the following one will be illustrated on Figure 4.a.
Here, we shall make use of one of the most powerful tools provided by mathematical morphology,
namely the watershed transformation [5]. It is de�ned for grayscale images via the notion of a
catchment basin: let us regard the image under study as a topographic relief and assume it is
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raining on it. A drop of water falling at a point p ows down along a steepest slope path until it is
trapped in a minimum m of the relief. The set C(m) of the pixels such that a drop falling on them
eventually reaches m is called catchment basin associated with the minimum m. The set of the
boundaries of the di�erent catchment basins of an image constitute its watersheds. These notions
are explained in extensive details in [27, 46].

In other words, the watershed edges or lines are located on the crest-lines of the image which
actually separate two di�erent minima (the watershed elements are always closed edges). The
basic idea of watershed segmentation consists therefore in applying this tool to the gradient of
the image I to be segmented. This is illustrated by Figure 3. Note that by gradient, we mean
here a morphological gradient of I, i.e., an image where the gray-level of each pixel is indicative of
the slope in the original image. One of the most popular gradients, often referred to in literature
as Beucher's gradient [35], is obtained by taking the algebraic di�erence between an elementary
dilation and an elementary erosion of I:

gradB(I) = (I �B)� (I 	B); (6)

(with B being an elementary square or disc).

I

⇒

"object", light on a dark
background in the present case grad(I)

Crest-lines of the
gradient =               contours

Figure 3 : Grayscale segmentation by watersheds of the gradient.

Now, as explained in [27, 45, 46], the direct application of the watershed transformation to a
gradient image usually leads to poor results. Indeed, even after dramatic �ltering of the original
image or of its gradient, the latter often exhibits far too many minima, and thus far too many
catchment basins. Hence, straightforward watershed segmentation of the gradient mostly leads to
oversegmented images, as illustrated by Figure 4.

To get rid of this problem, one of the best solutions consists in making use of markers of
the regions to be extracted. By marker of a given region, we mean a connected component of
pixels located inside this region. The assumption used here is that it is easier to design robust
methods to extract markers than to directly extract the precise contours of the desired regions.
Once these markers have been extracted, a classical morphological procedure based on grayscale
geodesic erosions [17, 45] allows us to:

� impose these markers as minima of the gradient while removing all other minima by �lling
up their associated catchment basins,

� preserve the highest crest-lines of the gradient located between two markers.

Then, computing the watersheds of the modi�ed gradient provides the best possible contours with
respect to the set of input markers and to the gradient itself. The quality of the resulting segmen-
tation is directly related to the initial markers and to a certain extent, to the used gradient. This
methodology, which is detailed in [46], has already proved to be particularly useful in various �elds
of image analysis, ranging from medical imaging to material sciences, remote sensing and digital
elevation models.
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(a)

(b) (c)

Figure 4 : (a) Original image. (b) Morphological gradient of (a). (c)
Image oversegmentation resulting from computing the water-
sheds of the gradient (b).
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f

f-h

Grayscale reconstruction

Subtraction

h

Double threshold followed
by binary reconstruction

h/2

Extracted domes

Obtained dome markers

Figure 5 : Algorithm used to extract the domes of a grayscale image.

Here, the main problem consists in extracting reliable markers of the regions. The di�culty
comes from the fact that very di�erent images are to be used as input in our system. It is therefore
impossible to make any assumptions on the shape and size of the regions as well as on the level
of noise. One could think for example in using (like in section 2.3) the top-hat transformation to
extract peaks and valleys. Unfortunately, this technique does not seem to be general enough, since
it involves choosing some structuring elements, and therefore making an assumption on the shape
and size of the regions to mark.

The method we �nally used instead is sometimes called generalized maxima/minima extraction,
or dome/basin extraction [46]. For the domes, e.g., the principle is to subtract an arbitrary constant
h from the original image I and to perform a grayscale geodesic reconstruction of I from I�h [44].
The grayscale reconstruction process can itself be viewed as an iteration of elementary dilations of
I � h with the constraint that at each step, the resulting image must be smaller than I for each
pixel. The reconstructed image is then subtracted from the original one, thus yielding a grayscale
image J of all the domes and crest-lines of I. >From J , it is then easy to extract a binary picture
of the most important domes: it su�ces to keep each dome which has at least one pixel with value
greater than a given constant h0. Usually, one takes h0 = h=2. This last operation is realized via
binary reconstruction [17] of J thresholded at level 1 from J thresholded at value h0. The whole
series of operations described in this paragraph is summarized by Figure 5. The dual process can
be used to extract the basins and valleys of I.

One can observe that the above algorithm does not make any assumption on the shape or size
on the regions. The only parameter it involves is the intensity constant h, which is related to the
relative height of the extracted domes and crest-lines. In fact, the choice of h turns out to be not
critical, since important variations of this parameter do not produce major changes of the extracted
domes. Besides, one of the major advantages of watershed segmentation is that small variations of
the shape of the markers have no inuence on the �nal result.

The domes and basins obtained by applying this method to Figure 4.a with constant h = 30
gray levels are respectively shown in Figures 6 and 7. These results are then easily combined into
one single marker image, shown in Figure 8.a. As explained, this marker image is used to modify
the image gradient in Figure 4.b in order to impose on it these markers as new minima. Although
this does not have a great inuence on the result here, we chose to use a morphological gradient

9



obtained as the maximum of 4 elementary directional gradients (i.e., gradients with respect to
the 4 elementary line segments of the grid). The �nal segmentation is illustrated by Figure 8.b,
superimposed to the original image.

It should be noted that this entire segmentation method is relatively fast. Indeed, the watershed
algorithm used runs in approximately 1 or 2 seconds on a Sun SparcStation 1, for a 256 � 256-
pixel image [46]. Similarly, the grayscale geodesic operations used twice in this procedure can be
e�ciently implemented either in a sequential fashion, or by using algorithms based on queues of
pixels [43]. Their execution time is usually less than one second in the same conditions.

(a)

(b) (c)

Figure 6 : (a) Original image. (b) \Domes" of (a). (c) in black: mark-
ers of these domes, obtained after double threshold (see Fig-
ure 5).
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(a) (b)

Figure 7 : (a) \Basins" of Figure 6.a; (b) in black: markers of these basins.

(a) (b)

Figure 8 : (a) �nal marker image; (b) �nal segmentation of Figure 6.a.
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Minima =
Ultimate erosion =
markers

Catchment
basins

Original shape

Distance function

Separation of the
overlapping components

⇒ ⇒

Figure 9 : Binary segmentation by watersheds of the negative of the dis-
tance function.

2.5 Watershed Segmentation Followed by Binary Region Segmentation

On Figure 8.b, one can notice that the obtained regions, though very accurate, sometimes exhibit
very strange shapes. As we shall see later, this characteristics may have a bad e�ect on the matching
algorithms, which usually work by using the centroid of the extracted regions. Furthermore, when
the matching is done with few regions, the results are not as dense as one would expect, especially
in comparison with the results provided by block matching techniques. Therefore, it is interesting
at this point to cut the regions obtained after the above watershed segmentation into smaller pieces.

Although several approaches may be considered to achieve this goal, watershed-based methods
seem once again to provide the most appropriate answer. We used here a technique which is
commonly used for binary segmentation tasks, i.e., to separate binary shapes into their perceptually
relevant components. This approach is detailed in [45, 46] and summarized in Figure 9. Its �rst step
consists in determining the distance function of the binary image under study: each pixel belonging
to the previously extracted regions is assigned a gray-level corresponding to its distance to the outer
boundary of this region. Then, the maxima of such a distance function image are called ultimate
erosion and mark the centroid of the di�erent components in which the regions will be decomposed
(see Figure 10). In actuality, in order to avoid getting too many markers, constrained maxima
of the type presented in Figure 5 are used again here. Finally, the components are obtained by
computing the catchment basins of the negation of the distance function, as illustrated by Figure 9.
The result of this binary segmentation algorithm applied to the regions of Figure 8.a is shown in
Figure 11.

2.6 Region Cleaning and Segmentation Results

The binary regions from the above four region extraction methods may be noisy. We clean them
by �rst using a maximum of openings followed by a minimum of closings by 4 vector structuring
elements oriented in four directions with length 3 pixels. This opening-closing �lter eliminates
noisy regions whose width in each of the four directions is smaller than the length of the structur-
ing element, while preserving line-type regions, which usually convey important information. In
addition, regions with areas less than a minimum of 9 pixels are considered too small to be reliable
and hence they are eliminated. Hence, the overall region post-smoothing consists of a cascade of
an opening-closing followed by an area �lter.

Examples of regions resulting from the algorithms described in the previous subsections (in-
cluding the pre- and post-smoothing) are presented in Figure 12. As Figure 12.b shows (with white
areas representing the positive sign regions), the regions from the edge operator convey similar
information as the edges. In contrast, the peak/valley regions in Figures 12.c and 12.d (where
the peaks and valleys are represented by the white areas) correspond to intensity bright or dark
blobs. Figure 12.e shows that watershed segmentation of the original gray-level image based on
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(a) (b)

Figure 10 : (a) Level lines of the distance function of the regions corre-
sponding to Figure 8.b; (b) markers (in white) of the compo-
nents in which the regions will be decomposed, superimposed
to the regions themselves.

Figure 11 : Final segmentation of the regions of Figure 8.b, superimposed
to the original Figure 6.a
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dome/basin markers yields binary regions that are generally consistent with the concept of image
segmentation. Finally, as shown in Figure 12.f, watershed segmentation of distance functions of
binary regions resulting from graylevel watershed segmentation yields the densest region �elds. (In
Figures 12.e,f the region boundaries are overlapped to the original image.) The e�cacy of these
four region types for motion correspondence will be compared later.

3 Region Matching

3.1 Matching Criteria/Algorithm

Our region matching algorithm is guided by Ullman's general correspondence principles [41], but
it also has two di�erences. First, the tokens Ullman used were 1-D line segments, whereas we use
2-D regions. Second, Ullman used a�nity measures for matching, whereas we select the best region
matching pair by comparing the similarities of regions based on an extended set of region features.
Speci�cally, let Ri and Rj be two regions with areas A(Ri) and A(Rj), respectively, extracted from
two consecutive image frames (at times t = tk; tk+1), and let ~ci; ~cj denote their centroids. Then,
�xing Ri, a region Rj from the frame at t = tk+1 is a possible candidate to match with Ri if it
successfully passes the following matching criteria:

1. Centroid Distance: For two centroids to match, their distance should not exceed an upper
bound; i.e., both the x- and y-components of the displacement vector ~ci� ~cj should not exceed
L pixels.

2. Region Identity: The sign (positive or negative) of two regions if they resulted from ther2G�I
approach, or their peak vs. valley (respectively, dome vs. basin) identities if they resulted
from the morphological peak/valley (respectively, watershed segmentation) approach must be
identical for allowing them to match.

3. Area Di�erence: The area of matching regions should not vary too much; i.e., jA(Ri) �
A(Rj)j < P � A(Ri) where 0 < P < 1.

4. Intensity Di�erence: The average intensities of the two regions should not vary too much;
i.e., ������

X

(x;y)2Ri

I(x; y; tk)

A(Ri)
�

X

(x;y)2Rj

I(x; y; tk+1)

A(Rj)

������
< IDmax:

Clearly, the �xed numbers L, P , and IDmax are control parameters for the correspondence
process. Speci�cally, L controls the range of correspondence. Region Ri may be matched with Rj

only if the centroid of Rj lies inside a square window of (2L + 1) � (2L + 1) pixels centered at
the centroid of Ri; and their r2G � I signs or their peak/valley or dome/basin identities are the
same. P and IDmax determine, respectively, the maximum percentage of area di�erence and the
maximum average intensity di�erence between two regions above which a match is impossible. The
parameters we used for these screening criteria in our experiments are L = 25 pixels, P = 0:3, and
IDmax = 20:

If there are no regions Rj in the frame at t = tk+1 satisfying the matching criteria, then there
is no match for the particular region Ri. If more than one candidate regions Rj pass the matching
criteria, the one having the smallest mean absolute intensity di�erence

X

(x;y)2Ri

jI(x; y; tk)� I(x+ dx; y + dy; tk+1)j

is selected, where (dx; dy) = ~ci� ~cj is the centroid displacement vector. This �nal matching criterion
has a similar e�ect as maximizing a nonlinear cross correlation consisting of a sum of minima [20].
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(a) (b)

(c) (d)

(e) (f)

Figure 12 : (a) Image I. Regions obtained by: (b) Sign of r2G � I.
(c) Peaks. (d) Valleys. (e) Watershed segmentation. (f) Wa-
tershed and binary region segmentation.

15



This nonlinear correlation gives sharper matching peaks and is computationally faster than the
linear (sum of products) correlation and its related mean squared matching error [20].

Each successful match of two regions in two consecutive image frames yields a spatial displace-
ment vector (dx; dy) among the two region centroids. Estimating the velocity of a region's centroid
by bringing it into correspondence with another region's centroid is not an arbitrary choice. The
classical mechanics theory dictates that, with respect to an external force or torque, the motion
of a rigid body can be represented by the motion of its centroid. Thus, we implicitly assume that
each region is a small patch of a rigid body. We do not assume, however, that over a whole region
the velocity remains constant. We simply estimate it only at the centroid. Finally, the average
velocity is equal to (vx; vy) = (dx; dy)=(tk+1 � tk): Henceforth, we assume a uniform sampling of
image frames in time and set tk+1 � tk = 1; which amounts to equating pixel displacements with
velocities.

Throughout the paper, images of the kind shown in Figure 13 are used as examples to illustrate
the region matching procedures. These test images have been obtained by moving a camera at
di�erent positions in front of a poster-print image and digitizing the viewed image �eld. The
problem is then to recover the apparent motion of the camera from the time series of image frames.

Figure 14 shows the result of matching the regions of Figures 13.a and 13.b extracted by the
four algorithms described previously. Figure 15 provides similar results for the apparent motion
between Figures 13.b and 13.c. In both cases, one can observe a few mismatches, mainly at the
boundaries, but the overall displacement �eld seems reasonably correct. In particular, the rotation
(�rst case) and zooming-out (second case) appear clearly. In these experiments velocity estimates
were obtained up to 15-20 pixels in x and y directions.

To compare our region-based approaches for estimating 2-D image velocities we have simulated
two other well known methods for 2-D motion detection: the block matching (also known as `area
correlation')1 and the iterative gradient-based method of [12]. Figure 16 shows the result of the
block matching and the gradient algorithm on the Poster image sequence. In general, the block
matching method has computational complexity O(B2L2G2) where B�B are the pixel dimensions
of the regions over which the error is averaged, L is the size of the search window for the optimum
displacement, and G�G represents the pixel dimensions of the 2-D grid of locations at which we
estimate displacement vectors. The complexity of the iterative gradient method [12] forH�W -pixel
image frames is about O(HWN), where N is the number of required iterations for convergence.
In the experiments reported in Figure 16 we used parameter values B = 21, L = 51, G = 21,
N = 256. Note that the complexity of the edge-sign and peak/valley region extraction methods is
about O(HWK2) where K�K are the pixel dimensions of the support of the Gaussian or opening-
closing �lters used for extracting edge-sign or peak/valley regions. The watershed segmentation
can be done e�ciently as in [46], and its computational complexity is linear in the number of
pixels, i.e. O(HW ). The binary region segmentation uses the watershed segmentation of the
distance function, and hence its computational complexity is also linear in the number of pixels.
In addition, assuming that the screening criteria leave only few candidate regions for matching,
the underlying mean absolute di�erence computation also has linear complexity in the number of
pixels. Thus, overall, since G2 is usually in the order of HW and K has the same order as B, due to
the L2 search factor the block matching method is computationally much more complex than the
region-based approach. Hence, although the block matching gives satisfactory velocity estimates,
it is very computation-intensive. Further, the standard block matching implicitly uses regions of

1The block matching is a well-known method, especially among researchers in video compression and remote
sensing, to estimate 2-D velocities or pixel displacements on the image plane by minimizing E(~d) =

P
~p2R

jI(~p; t1)�

I(~p+ ~d; t2)j
2 over a small region R to �nd the optimum displacement vector ~d. Minimizing E(~d) is closely related

to �nding ~d such that the correlation
P

~p2R
I(~p; t1)I(~p + ~d; t2) is maximized; thus, it is sometimes called the area

correlation method. A more e�cient version of the method results from minimizing the mean absolute matching
error.
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(a)

(b) (c)

Figure 13 : `Poster' sequence of test images (256 � 256 pixels). >From
(a) to (b) the camera was rotated 10� counter clockwise, and
from (b) to (c) it was translated along the camera's optical
axis from a distance of 149 cm to a distance of 174 cm. (The
camera axis was perpendicular to the poster object surface.)
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(a) (b)

(c) (d)

Figure 14 : Velocity �elds resulting from matching regions of Figures 13.a
and 13.b extracted by: (a) Sign representation of r2G�I; (b)
Binarized peak/valleys; (c) Watershed segmentation; (d) Wa-
tershed segmentation followed by binary region segmentation.
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(a) (b)

(c) (d)

Figure 15 : Velocity �elds resulting from matching regions of Figures 13.b
and 13.c extracted by: (a) Sign representation of r2G�I; (b)
Binarized peak/valleys; (c) Watershed segmentation; (d) Wa-
tershed segmentation followed by binary region segmentation.
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�xed size, whereas our approach allows for arbitrary regions and hence is much more exible. On
the other hand, as Figures 16.c,d show, the gradient algorithm has a very poor performance in
detecting long-range motion; i.e., the pixel displacements ranged between 0 and 19 pixels. The
gradient algorithm performs well only in very short-range motion, i.e., displacements by 1-2 pixels.
In contrast, our region-based methods can provide good velocity estimates both for short- and
long-range motion at a relatively low computational complexity.

3.2 Velocity Smoothing

Although many of the region matches appear to be accurate and robust, there may be a few
mismatches. We view the mismatches as noise on the estimated velocity �eld. Then a question
naturally arises of how to smooth the velocities.

We exclude the smoothing of the velocity vector �eld via linear �ltering (e.g., local averaging)
because linear smoothing �lters have the well-known tendency to blur and shift sharp discontinuities
in signals. In the case of velocity �elds, these sharp discontinuities may indicate object boundaries
and, hence, must be preserved. We choose median �ltering because median �lter is a nonlinear
�lter and can eliminate outliers or mismatches while preserve motion edges. Vector median �ltering
is de�ned to be the x; y componentwise median �ltering:

medif~vig = (medifvx;ig;medifvy;ig):

where velocities ~vi = (vx;i; vy;i); i = 1; 2; :::; n are the estimated velocities at various centroids around
and including a centroid ~c. Due to the relative sparseness of centroids, the estimates are found by
searching inside a spatio-temporal cube centered at ~c and time tk and whose size increases (but
does not exceed twice the maximum window of matching) until n velocity estimates are found. In
our experiments we set the parameter n = 7 and the size of the search cube 40 pixels in each spatial
direction and three image frames along the time direction. Figure 17 illustrates the corresponding
spatio-temporal vector median �ltered results of Figure 15, which shows signi�cant improvements.
This vector median has been generally found to perform well in smoothing velocity �elds [7]. (For
a recent theoretical analysis of the vector median see [3].)

4 Experiments and Discussion

In this section we provide some empirical numerical results from experiments on comparing the
estimation error of the four region-based approaches applied either on clean images or on images
corrupted by adding salt-and-pepper or white Gaussian noise. While our numerical results refer
only to the Poster image sequence of Figure 13 for purposes of brievity of exposition, we have
reached similar conclusions by applying our algorithms to a large variety of moving images of
outdoors and indoors scenes.

To simulate motion by a known amount in our numerical comparisons, the image of Figure 13.a
was translated vertically and horizontally by the same number of pixels. Then both the original
and the translated images were corrupted with salt-and-pepper or white Gaussian noise. Figure 18
shows the image of Figure 13.a corrupted with 5% and 10% salt-and-pepper noise, as well as with
white Gaussian noise at levels of 30 and 20 dB of peak-to-peak signal-to-noise-ratio (SNR). The
SNR is de�ned as 20 log10(255=�n), where �n is the standard deviation of the noise. Tables 1,2 and
3,4 show the performance of the four region-based approaches followed by median smoothing of
the velocities in estimating the 2-D motion between original and translated in the cases of 10� 10
and 20 � 20 pixel translations. Speci�cally, these Tables tabulate the average estimation error
in both the x- and y-component of the displacement vector, averaged over all regions to which a
velocity was assigned. They also show the number of regions in the �rst image frame, which were
successfully matched and assigned a velocity vector.

20



(a) (b)

(c) (d)

Figure 16 : Velocity �elds resulting from: (a) Block matching of the im-
ages in Figures 13.a and 13.b. (b) Block matching applied to
Figures 13.b and 13.c. (c) Gradient algorithm [12] applied to
Figures 13.a and 13.b. (d) Gradient algorithm [12] applied to
Figures 13.b and 13.c.
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(a) (b)

(c) (d)

Figure 17 : Velocity �elds of Figure 15 smoothed via a spatio-temporal
vector median �lter.
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Table 1 : Translation 10� 10 pixels, Salt-and-Pepper Noise
No noise 5% noise 10% noise

x err y err vel# x err y err vel# x err y err vel#

r2G edge sign 0.0082 0.0012 85 0.0788 0.1390 73 0.2161 0.4339 59

Peak/Valley 0.0713 0.1327 127 0.1277 0.1164 110 0.2125 0.2807 88

Watershed 0.0000 0.0018 114 1.3960 0.7715 100 1.9734 2.1661 96

Wat.&Bin.Seg. 0.0006 0.0015 162 0.9581 0.9822 135 2.3427 2.2573 137

Table 2 : Translation 10� 10 pixels, White Gaussian Noise
No noise SNR=30 dB SNR=20 dB

x err y err vel# x err y err vel# x err y err vel#

r2G edge sign 0.0082 0.0012 85 0.7082 0.4352 61 2.8658 2.0162 136

Peak/Valley 0.0713 0.1327 127 0.6473 0.7132 91 1.7753 1.6258 99

Watershed 0.0000 0.0018 114 1.4331 0.8904 266 4.9306 1.7426 417

Wat.&Bin.Seg. 0.0006 0.0015 162 1.3203 0.8198 303 4.7689 1.7307 417

Table 3 : Translation 20� 20 pixels, Salt-and-Pepper Noise
No noise 5% noise 10% noise

x err y err vel# x err y err vel# x err y err vel#

r2G edge sign 0.6408 0.2487 76 0.3400 0.8164 70 1.1794 1.2183 63

Peak/Valley 0.0438 0.3223 121 0.3103 0.2848 102 1.2506 0.8698 86

Watershed 0.0032 0.0000 95 1.9323 0.9167 96 5.7756 3.9074 129

Wat.&Bin.Seg. 0.0504 0.0011 139 5.8425 1.6827 127 4.2118 3.9048 165

Table 4 : Translation 20� 20 pixels, White Gaussian Noise

No noise SNR=30 dB SNR=20 dB

x err y err vel# x err y err vel# x err y err vel#

r2G edge sign 0.6408 0.2487 76 0.2781 0.6555 64 5.3332 2.6679 131

Peak/Valley 0.0438 0.3223 121 2.7898 2.0333 93 4.9663 5.6870 104

Watershed 0.0032 0.0000 95 3.8875 1.6351 276 7.0879 2.5315 459

Wat.&Bin.Seg. 0.0504 0.0011 139 3.2130 1.9092 319 7.2363 2.2531 463

As Tables 1,2,3,4 show, when there is no noise,2 all four approaches perform very well in es-
timating translations of 10 and 20 pixels in each direction, since the error is a small or negligible
fraction of a pixel. This small amount of error is caused by the image boundaries where regions
appear or disappear. In the noise-free case, the watershed segmentation followed by binary region
segmentation yields very small errors and the densest velocity estimates. However, the two wa-
tershed segmentation approaches (with or without binary region segmentation) are more sensitive
to noise than the edge-sign or peak/valley region approaches. Hence, the watershed with binary
region segmentation is the most recommended approach when the noise level is very low.

In the presence of white Gaussian or salt-and-pepper noise, the r2G edge-sign and the morpho-
logical peak/valley region approaches perform similarly and better than the watershed approaches.
Speci�cally for 5%{10% salt-and-pepper and for 30 dB white Gaussian noise both approaches yield
a translation estimation error in the order of about 1{10%. For 20 dB white Gaussian noise, this
error order increases to 15%{25%. In some of our past experiments that did not include image pre-

2In the noise-free case, the regions of the original and arti�cially translated image should be the same, except for
these close to the boundary, because the image smoothing, region extraction, and region cleaning algorithms are all
translation-invariant. Hence, in this case all the displacement estimates from our algorithms should be correct except
at boundaries; our experiments con�rmed this fact.
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(a) (b)

(c) (d)

Figure 18 : The image of Figure 13.a corrupted by: (a) 5% salt-and-
pepper noise; (b) 10% salt-and-pepper noise; (c) white Gaus-
sian noise, SNR=30 dB; (d) white Gaussian noise, SNR=20
dB.
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Table 5 : Rotation � = 5o; Salt-and-Pepper Noise
No noise 5% noise 10% noise

x err y err vel# x err y err vel# x err y err vel#

r2G edge sign 0.6793 0.6821 80 0.6924 0.6587 76 0.7998 1.1892 69

Peak/Valley 0.6544 0.6757 115 0.6866 0.9265 94 1.0953 1.1696 84

Watershed 1.0773 0.7163 102 1.5338 1.2532 111 2.2324 1.4570 120

Wat.&Bin.Seg. 0.9558 0.8951 129 1.3837 1.5574 142 2.0657 1.8908 150

Table 6 : Rotation � = 5o; White Gaussian Noise
No noise SNR=30 dB SNR=20 dB

x err y err vel# x err y err vel# x err y err vel#

r2G edge sign 0.6793 0.6821 80 0.8304 0.7589 62 2.2189 3.5590 133

Peak/Valley 0.6544 0.6757 115 0.9501 1.1627 89 1.9477 2.2813 101

Watershed 1.0773 0.7163 102 1.1765 3.0664 272 2.3182 5.0146 412

Wat.&Bin.Seg. 0.9558 0.8951 129 1.2113 2.9663 311 2.4222 5.0465 416

Table 7 : Rotation � = 10o; Salt-and-Pepper Noise

No noise 5% noise 10% noise

x err y err vel# x err y err vel# x err y err vel#

r2G edge sign 1.6475 1.2946 77 1.8442 1.4170 72 2.4996 3.2853 62

Peak/Valley 1.6383 1.4963 110 1.7134 1.5889 96 2.5090 1.5844 92

Watershed 1.9134 1.3308 101 2.3950 3.1793 119 3.9043 4.5042 134

Wat.&Bin.Seg. 1.6664 1.5161 135 3.0048 3.7086 162 3.6614 5.3904 170

Table 8 : Rotation � = 10o; White Gaussian Noise
No noise SNR=30 dB SNR=20 dB

x err y err vel# x err y err vel# x err y err vel#

r2G edge sign 1.6475 1.2946 77 2.0777 2.3999 69 3.1877 3.9804 164

Peak/Valley 1.6383 1.4963 110 1.6820 1.7981 89 5.0176 4.3769 102

Watershed 1.9134 1.3308 101 3.0208 6.5733 304 4.1037 7.7669 476

Wat.&Bin.Seg. 1.6664 1.5161 135 3.0777 6.3587 341 4.0219 7.7885 482

smoothing and velocity post-smoothing we had observed that the r2G edge sign performed better
that the peak/valley approach in white Gaussian noise, whereas the opening-closing peak/valley
approach performed better in salt-and-pepper noise. This is somewhat expected because the linear
Gaussian smoother performs better in suppressing white Gaussian noise, whereas the nonlinear
opening-closing smoothers are superior for suppressing salt-and-pepper noise. However, in our
present system the image pre-smoothing via alternating sequential �ltering and the velocity post-
smoothing via vector median �ltering tend to blur the distinctions between the edge sign and
peak/valley approaches. One di�erence, however, is that the peak/valley approach tends to yield
denser velocity �elds than the edge-sign approach in most cases.

Tables 5,6,7,8 show the average displacement estimation errors and the number of velocity
estimates using the four region approaches for a simulated rotational motion of the image in Fig-
ure 13.a by amounts of � = 5o and 10o degrees, in a noise-free case as well as in the presence of
noise. Note that the rotations by 5o and 10o with respect to the image center incur displacements
ranging between 0{11 and 0-22 pixels. As Tables 5,6,7,8 show, the average displacement estimation
errors were in the order of 1-2 pixels for all four methods in the noise-free case. In the noisy case
(5%{10% salt-and-pepper noise and 30-20 dB white Gaussian noise), the edge-sign and peak/valley
approaches yielded average errors in the order of 1{5 pixels, whereas the errors of the watershed
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approaches were in the order of 1{8 pixels. >From the estimation error viewpoint, it appears that
all four approaches perform similarly in the noise-free rotation case, since they yield average errors
of similar order. The watershed followed by binary segmentation yields again the densest veloc-
ity �elds. In the noisy case, the edge-sign and peak/valley approaches perform better than the
watershed approaches.

5 Conclusion

We have developed four region-based approaches to solve the visual motion correspondence problem
and compared their performance. The main part of the work is the region extraction phase.
Thus, in each image frame the regions are extracted from any of the four following approaches:
(i) the sign representation of the r2G edge operator; (ii) thresholding morphological peak/valley
transformations; (iii) morphological watershed segmentation of image gradients using dome/basin
markers; (iv) watershed segmentation of image gradient followed by watershed segmentation of
the distance functions of the resulting binary regions. The motion correspondence problem is then
solved by matching the extracted regions via a procedure that compares regions based on similarities
among several of their features. Image velocities are identi�ed as the spatial displacement vectors
between centroids of corresponding regions. The 2-D velocity estimates are then smoothed by a
spatio-temporal vector median �lter.

Several numerical comparisons have been done in the absence or presence of noise to compare
the four region approaches. The results indicate that in the noise-free case the watershed followed
by binary region segmentation is the best approach in yielding one of the smallest (in translational
motion) or similar-order (in rotational motion) estimation errors and the densest velocity �elds. In
the noisy case both the edge-sign and peak/valley approaches perform similarly and better than
the watersheds, with a small advantage of the peak/valley approach in giving denser velocity �elds
than the edge-sign approach.

Our experiments on real and synthetic moving imagery provide strong evidence that the de-
veloped region-based system for 2-D displacement estimation performs well for both short- and
long-range motion and has some advantages over two other approaches. Speci�cally, while the
region-based approach has similar performance with the block matching method, the latter is com-
putationally much more intense. In addition, for medium- or long-range motion the region-based
approach performed much better than the iterative gradient method of [12].

Finally, in addition to their usefulness for motion tracking, the developed morphological region
extraction methods can also serve as e�cient systems for robust 2-D feature extraction in a variety
of computer vision tasks.
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