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Abstract

The usefulness of the hit-miss transform (HMT) and related transforms for pattern matching in doc-
ument image applications is examined. Although the HMT is sensitive to the types of noise found in
scanned images, including both boundary and random noise, a simple extension, the Blur HMT, is rela-
tively robust. The noise immunity of the Blur HMT derives from its ability to treat both types of noise
together, and to remove them by appropriate dilations.

In analogy with the Hausdorff metric for the distance between two sets, metric generalizations for
special cases of the Blur HMT are derived. Whereas Hausdorff uses both directions of the directed dis-
tances between two sets, a metric derived from a special case of the Blur HMT uses just one direction
of the directed distances between foreground and background components of two sets. For both fore-
ground and background, the template is always the first of the directed sets. A less restrictive metric
generalization, where the disjoint foreground and background components of the template need not be
be set complements, is also derived. For images with a random component of noise, the Blur HMT is
sensitive only to the size of the noise, whereas Hausdorff matching is sensitive to its location. It is also
shown how these metric functions can be derived from the distance functions of the foreground (FG) and
background (BG) of an image, using dilation by the appropriate templates.

The Blur HMT can be used as a fast heuristic to avoid more expensive integer-based matching tech-
niques, and it is implemented efficiently with boolean image operations. The FG and BG images are
dilated with structuring elements that depend on image noise and pattern variability, and the results are
then eroded with templates derived from patterns to be matched. Subsampling the patterns on a regular
grid can improve speed and maintain match quality, and examples are given that indicate how to explore
the parameter space. Truncated matches give the same result as full erosions, are much faster, and for
some applications can be performed at a restricted set of locations.

Keywords: pattern matching, scanned image, hit-miss transform, Hausdorff distance, blur hit-miss,
image morphology, OCR
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1 Introduction

Pattern matching techniques are critical for all aspects of the analysis of document images. Documents are
typically scanned into a binary image, and many of the operations subsequently performed, both for page
segmentation and character identification, use the pattern matching techniques (e.g., erosionand its dual,
dilation) of binary image morphology. There are several reasons: they are implemented by fast boolean
operations; they can be used either for extracting or extending pixel aggregations, both for direct use in
later image processing and for subsequent analysis; they are translationally invariant; they can be used to
treat both foreground (FG) and background (BG) simultaneously; and they can be used without regard to
connected component analysis. Further, there exist a variety of methods for controlling the noise immunity
of these operations.

One of the most important uses of pattern matching is in the analysis of character shapes. For binary
input, the result of image processing can be either binary or gray (integer value) images. Binary results are
much faster to compute, but they contain less information. Even for binary output, the internal operations
can be integer or boolean. For integer operations, such as convolution and thresholded convolution (rank
order filters[8]), some level of noise immunity is achieved, but at the price of doing expensive arithmetic
operations on each pixel.

We use the term templateto refer to the pattern of FG and BG pixels that are to be matched in the image.
The hit-miss transform(HMT) is a faster boolean operation that performs translationally-invariant matching
between both the FG and BG of template and image sets. However, it is prone to error from noise because
exact matches are required between image and template in both the FG and BG. Because of the simplicity
and power of the HMT, there have been many attempts to use it for pattern matching. The usual approach is
to choose a subset of the template pixels, typically sparse. We cite a few examples.

Zhao and Daut[3] gained noise immunity, relative to a HMT, by using either boundary pixels of eroded
FG and BG templates, or skeletons of these templates, as structuring elements for the HMT. Wilson[15]
automated the design of the structuring elements through a training process that searched for the smallest
subset of pixels that would attain the desired level of discrimination. Kraus and Dougherty[5] generated a
sparse set of structuring elements by thresholding a single grayscale instance of each character. Appropriate
choice of thresholds is the critical element: if chosen too conservatively, the subset is too sparse and lacks
discriminatory ability; if chosen too tightly, instances with atypical variation are missed. Gillies[4] took a
somewhat different approach, accumulating statistics from instances of each character, and thresholding the
aggregates to generate non-sparse structuring elements. From these, multi-pixel features were extracted and
used to train a classifier for character discrimination.

One characteristic that these methods have in common is an attempt to compensate for image noiseby
altering the template, and leaving the image alone. We argue here that although it is useful to choose a
subset of template pixels, it is important to alter the image before performing the HMT. The blur hit-miss
transform(BHMT) has been introduced to do precisely this[1]. Unlike the HMT, the BHMT performs the
match between template and image, for both FG and BG, with a variable degree of tolerance to alignment
of image and template pixels. The “blur” parameter specifies the maximum distance allowed between a
template pixel and the nearest image pixel, in order to constitute a match for that template pixel. Stated this
way, there is an interesting relation between the BHMT and the Hausdorff metric for the distance between
two sets, but the differences are important for their uses in applications.

To understand the usefulness of the BHMT, it is necessary to consider the origin of noise in scanned
document images. We postulate a simple model, where variability between instances in the image is caused
by two different processes. One type is boundary noise,caused by the binarization process along the edge of
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an object. Depending on the sub-pixel alignment of scanned objects with scanner pixels, considerable edge
variation occurs. This boundary noise is typically restricted to a width of two pixels, including both FG and
BG boundary pixels. The second type is random noise, either generated in printing or due to scanner defects
such as dirt on the platten. This is assumed to occur independently of the pixels in the scanned object, and
is most often observed as isolated FG “pepper” pixels surrounded by BG. It should be noted that both types
of noise occur in boundary pixels, defined to be pixels of either FG or BG that are adjacent to a pixel of the
opposite type. Thus, operations that treat boundary pixels appropriately will influence both types of noise.

Even without random noise, boundary noise will defeat an HMT that uses boundary pixels in the tem-
plate. Therefore, when computing matches, it is necessary to give little or no weight to the boundary pixels.
On the other hand, the non-boundary pixels, because of their high correlation between template and im-
age, are critical for matches. Differences occurring between non-boundary pixels in image and template,
although relatively rare, will defeat both a matching technique like HMT, that requires an exact match of all
pixels, and a metric such as Hausdorff, that is sensitive to such “outliers”.

The paper is organized as follows. In Sec. 2.1 the BHMT is defined, and the method in which it provides
immunity to both types of noise is described qualitatively. In Sec. 2.2, the Hausdorff metric is introduced,
and the connection between this measure on sets and operations using morphology is made. Also, an
illustration is given to show why the Hausdorff metric is not appropriate for matching templates to noisy
images. In Sec. 2.3, two metric functions are constructed, that are related to special cases of the BHMT.
The same example is then used to show how the BHMT succeeds in matching templates to noisy images.
Then in Sec. 2.4, the BHMT metric functions are again derived, this time from dilations by the template of
the distance function for the image. In Sec. 3, several methods for efficiently implementing the BHMT are
described, including subsampling the template. Some experimental results are given in Sec. 4 to illustrate
the use of the BHMT in identifying characters, and the major findings of the paper are summarized in Sec. 5.

Erosion

HMT

Rank BHMT

Rank HMT Blur HMT

Particularize:
background and foreground

Blur MatchThreshold Convolution

Figure 1: Family of rank and blur template matching operations.

We end this section with an illustration, in Fig. 1, of the family of rank and blur template matching
operations. The HMT generalizes the erosion to operations that match in both FG and BG. The rank oper-
ations take thresholds on convolutions, whereas the blur operations remove boundary pixels appropriately
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before doing strict matching. The rank HMT, a relatively expensive integer operation, requires co-location
of image and template pixels, but eases the constraint on the number of matches. The rank HMT and the
BHMT can also be combined into the rank BHMT, in which a match is accepted if only a given number of
template pixels are within a given distance of the nearest image pixel. In the sequel, we concentrate on the
BHMT, but we give one example of the use of the rank BHMT.

2 Blur HMT

2.1 Basic definitions

We are strictly interested in the discrete case of sets and functions defined on ZZ2, although extensions can
be made to the continuous case or higher dimensions. The basic morphological operations are erosionand
dilation. The erosion of a binary image X by a structuring element (SE) B is the set operation defined by

X 	B =
\

b2B

X�b = fx 2 ZZ
2 j Bx � Xg (1)

where X�b is the translation of image X by �b. The second definition states that erosion generates a set
with a non-empty result at every location where the translate of B fits entirely within X . The dilation of an
image X is defined

X �B =
[

b2B

Xb =
[

x2X

Bx = fx+ b 2 ZZ
2 j x 2 X; b 2 Bg (2)

The first and second definitions state that dilation generates a set composed of the union of translations of
X by elements in B, and v.v. Note that 	 and � are not the original definitions of Minkowski subtraction
and addition, respectively, which require an inversion of the SE about its center[12].

The HMT is a morphological template matcher whose definition is based on the erosion operator[12].
The HMT of a binary image X by a disjoint pair (�f ; �b) of SEs is defined as the set transformation

X 
 (�f ; �b) = (X 	 �f ) \ (XC 	 �b) (3)

where XC is the set of BG pixels of X . The HMT generates a set with non-empty result at every location
where both the FG SE �f fits entirely within X and the BG SE �b fits entirely within XC , the complement
of X . It is common to speak of the elements in �f as hits, of elements in �b as misses, and elements not in
their union as don’t-cares.

There are several methods for reducing the sensitivity to boundary noise. We can erode the template SEs
by the blur SEs, or dilate the image by the blur SEs, all prior to the HMT. Eroding the template removes its
boundary pixels from consideration, whereas dilating the image removes the image boundary pixels. The
random noise pixels are also affected: eroding the template opens up FG and BG holes, so they are not
included in the match; dilating the image closes up holes (i.e., removes salt and pepper) in FG and BG.
The results of these operations (followed by the HMT) differ, and the choice must be made based on the
statistics of expected noise. For document images, the template is expected to be free of salt and pepper
noise in situations where it can be generated by averaging a large set of instances. However, this is not true
for the image. Salt and pepper noise in the image will prevent matches between FG and BG of the template,
respectively. Generally, it is imperative to remove noise pixels from both the template and image before
doing the HMT. For situations where random noise is more frequent in the image than in the template, we
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thus define the BHMT of a binary image X using the SE pair (�f ; �b) for the template and the SE pair
(�f ; �b) for blur as follows (Also see [1]):

X 
 (�f ; �b;�f ; �b) = (X � �f )	 �f \ (XC � �b)	 �b (4)

It can be noted that there is no requirement that the SEs used for blur are symmetric about their center.
Translation of the center of a SE simply results in translation of the dilated image. Also note that �f and
�b are typically non-overlapping. Take for example the case where �f = o, �b = o and �f \ �b 6= ;: it
corresponds to a traditional HMT (no blur), using an overlapping pair of SEs. In such a case, for any set
X , one can easily verify that X 
 (�f ; �b) = ;: it is indeed impossible to translate (�f ; �b) in such a way
that the translated �f is included in X andthe translated �g is included in XC . With some blur, that is when
sets �f and �b are not reduced to a single pixel, it is possible to obtain a non-empty BHMT results even
when �f \ �b 6= ;. However the practical interest of using overlapping �f and �b is extremely limited. In the
sequel, we typically assume that �f \ �b = ;

2.2 Relation between Hausdorff metric and morphology

The Hausdorff metric is a distance between sets that allows one to define a topology on the set of all possible
sets in the plane[9]. In image terminology, it is a distance between the FG of two images. The relation
between the Hausdorff metric and a pair of blurred template matches has been noted previously[2], and we
present the connection here.

Define the distance function[11] from a point p to the nearest point in a set X to be d(p;X). If p 2 X ,
then d(p;X) = 0. For two sets T and I , define the directedHausdorff distance[6] from T ) I as the
maximum over the pixels in the set T of the distance from the pixel in T to its nearest pixel in I:

D(T; I) = supt2Td(t; I) (5)

For applications to document images, consider T to be a FG template and consider I to be a windowed
subset of the image X with support equal to that of the template. Then for each position in the plane
represented by X , there exists a windowed subset I � X and a directed Hausdorff distanceD(T; I) between
T and the co-located I . Suppose this distance is Æ. If the set I is dilated by a disk of radius Æ, the distance
between the dilated set and T will be zero. Consequently, an erosion of the dilated I by T will give a
non-empty result.

The Hausdorff metric DH is formed symmetrically between T and I , as the maximum of the two
directed Hausdorff distances:

DH(T; I) = maxfD(T; I);D(I; T )g (6)

Its relation to the blurred match between template and windowed image subset is[2]

DH(T; I) = inff� � 0 j T � (I � �B) and I � (T � �B)g (7)

where B is the unit disk SE. This is a symmetrical relation between FG sets. If I and T are very similar, small
dilations act only to reduce the distance contributions from boundary pixels. Thus, a single non-boundary
noise pixel in either I or T can render the Hausdorff distance quite large.

The effects of noise are illustrated by the two sets shown in Fig. 2. Call the sets on the left and right
T and I , respectively. We have chosen the template to be less noisy and slightly eroded with respect to
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(a) (b)

Figure 2: Two sets used to illustrate effect of noise in Hausdorff distance. One percent of
random noise was added to the set on the right.

Figure 3: Directed Hausdorff distances generated from sets in Fig. 2. The left and right
frames are the directed distancesD(T(x;y); I) andD(I(x;y); T ), respectively.
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the image. The directed Hausdorff distances generated by these sets are shown in Fig. 3. The left frame is
the directed distance D(T(x;y); I) from T ) I , evaluated at each possible location of T with respect to I .
Darker values represent shorter distances. The best match, with a distance of 0, is from the dark region near
the center. However, because of the noise in I , the distance D(I(x;y); T ) from I ) T , shown in the right
frame, has a very large value at that location. In fact, the smallest distances in D(I(x;y); T ) are found near
the boundaries, due to clipping. This clipping effect is another complication of using a windowed directed
Hausdorff distance from large image to a small template. For this example, the Hausdorff distanceDH(T; I)
is identical to the directed distance D(I(x;y); T ) for every translate of I , because the match between the two
sets is entirely obscured by the noise in I .

2.3 Blur HMT metric

The BHMT produces a binary image representing locations of a match with a given amount of FG and BG
blurring. In this section, we construct two BHMT-related distance metrics, in analogy with the Hausdorff
metric. These are a generalized distance between image and template that, when thresholded, produce a
BHMT for the value of FG and BG blur equal to the threshold.

When the template SE T is located on some windowed subset I of X , its center falls on coordinates
(x; y). Label each subset I of X by this location (x; y). Then form a FG/BG metric DFB , in analogy to
DH , that measures the directed distance between the FG and BG parts of T and I . The obvious choice for
direction is T ) I . Indeed, since the template is supposed to have been carefully chosen, it should exhibit
little boundary pixel noise and no salt-and-pepper noise. Since the main purpose of the dilation operations
used as part of the BHMT operation is to eliminate such noise before matching (See Eg. 4), it would not
make sense to use direction I ) T . For the same reason, using Hausdorff distance DH typically does not
work as well as this directed blur HMT metric because of adverse effects of salt-and-pepper type noise. For
example, mainly because of pepper noise, the Hausdorff distance between the two sets of Fig. 2 would be
very large. On the contrary, the directedBlur HMT distance from Fig. 2a to Fig. 2b would be dramatically
smaller, which reflects the fact that these two sets simply are different instances of the same letter P.

Accordingly, we now dilate the full image X and use the (x; y) translate of T , T(x;y), to compare T with
each subset I of X in computing the metric:

DFB(T(x;y);X) = inff� � 0 j T(x;y) � (X � �B) and TC
(x;y) � (XC � �B)g (8)

= maxfD(T(x;y);X);D(TC
(x;y);X

C)g (9)

To understand the relation between DFB and the BHMT, consider the BHMT in its most simple form, with
two disk SEs of equal radius for the blur and two SEs for the templates that are set complements. Setting
�f = T and �b = TC , the BHMT is found by thresholding DFB:

X 
 (T; TC ; rB; rB) = f(x; y) 2 ZZ
2 j DFB(T(x;y);X) � rg (10)

The restriction in DFB that the two SEs for the templates are set complements can easily be relaxed to
the disjoint constraint for SEs in the HMT, by requiring only that �f � T and �b � TC . Then the metric
DFB is generalized to

DBHMT (�f(x;y); �b(x;y) ;X) = inff� � 0 j �f(x;y) � (X � �B) and �b(x;y) � (XC � �B)g(11)

= maxfD(�f(x;y);X);D(�b(x;y);X
C)g (12)
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with the thresholding relation

X 
 (�f ; �b; rB; rB) = f(x; y) 2 ZZ
2 j DBHMT (�f(x;y); �b(x;y);X) � rg (13)

We use the notation “BHMT*” to indicate the special case where the same dilation operator is used for both
FG and BG. For the general case there are two BHMT distance metrics, one for FG and one for BG, and the
BHMT is derived from from them by thresholding each separately and AND-ing the results.

For reasons of both efficiency and effectiveness we are usually interested in BHMT where �b 6= �Cf and
�f 6= �b. Examples will be given in Sec. 4. In Sec. 2.4, we arrive at a distance metric generalization for the
BHMT by a different route.

Whereas DH has bi-directional symmetry between two FG sets, and ignores the BG, DFB has FG/BG
symmetry but imposes a directionality on the relation between the two sets T and X . Unlike the Hausdorff
metric, DFB and DBHMT are relatively immune to salt and pepper noise pixels in X . However, they are
sensitive to noise in the themplate T , so in practice, one must ensure that the FG and BG of template T is
free of salt and pepper noise.

Figure 4: BHMT distances generated from sets in Fig. 2. The first and second frames are
the directed distancesD(T; I) andD(T C ; IC), respectively. The third frame
isDFB, the maximum of the two directed distances.

Referring to Fig. 4, illustrating the BHMT for the same example as previously shown for Hausdorff, the
directed distanceD(T; I) in the first frame is identical to the directed HausdorffD(T; I) in Fig. 3. (Although
we now omit the (x; y) label on T , remember that these functions are defined over the set (x; y) 2 ZZ

2 of
translates of T .) However, the second frame gives the directed distance for the BG, D(T C ; IC). The effect
of noise on this distance is small: it is determined by the sizeof the noise in I , rather than the distance
from the noise to T . The contribution from the BG does affect the overall match to a small extent, as shown
by DFB in the third frame. This is the special case of the BHMT metric DBHMT where the FG and BG
templates are set complements. Because the BHMT distances are always directed T ) X from the template
to the large image, boundary effects occur only on the boundary of the image X .

Geometrically, the BHMT as we have defined it has the following interpretation: the “blur dilations” of
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image X and its complement XC create a halo of pixels near image boundaries. This halo can be regarded
as the “don’t care” region of image X , and one of its nice characteristics is that it typically contains all the
salt and pepper pixels. In a BMHT operation based on template T , a match is obtained when the FG of
the template is located on FG pixels of the image or on “halo pixels”, and when the BG of the template is
located on BG pixels of the image or on “halo pixels”. In other words, this BHMT operation introduces a
way to use “don’t care” pixels in the image as well as in the template used for matching. As such, it is a
natural extension of the traditional hit-miss operation.

2.4 Blur HMT metric derived from distance function

Let us now consider a template T and a binary image X . For each translation T(x;y) of this template we are
interested in computing the directed Hausdorff distance D(T(x;y);X) between the translated template and
X . This Hausdorff distance is equal to the smallest isotropic dilation size of X such that T (x;y) is included in
this dilated image. Specifically, if B represents the 3� 3 isotropic ball of the 8-connected distance function
(3� 3 square), we can write

D(T(x;y);X) = minfn � 0 j T(x;y) � (X � nB)g (14)

where X � nB represents the n-fold dilation of X by B, or equivalently the dilation of X by a (2n+ 1)�
(2n+ 1) square structuring element, whose center is located on its geometric center.

Consider now for any pixel (x; y) the following distance function:

dX(x; y) = minfn � 0 j (x; y) 2 (X � nB)g (15)

This distance dX is simply a traditional distance function computed on the background of X: it assigns to
each pixel its 8-connected distance to the nearest pixel of X . Obviously, any pixel (x; y) included in X is
given a value of 0 by this distance function. See [11, 13] for more information on distance funtions and their
use in morphology.

Putting together the previous two equations we can write:

D(T(x;y);X) = maxfdX(i; j) j (i; j) 2 T(x;y)g (16)

In other words, the directed Hausdorff distance from T(x;y) to X can be obtained by extracting the maximal
value of distance function dX over pixels (i; j) belonging to the translated template T(x;y). Therefore:

D(T(x;y);X) = (dX � T )(x; y); (17)

that is, the directed Hausdorff distance between template T translated to pixel (x; y) is equal to the value of
the grayscale dilation of distance function dX by template T at pixel (x; y).

The benefits of Equation (17) are numerous. First, it provides us with a computationally attractive
method to compute a map of the quality of directed Hausdorff match at each pixel location: in this map, the
pixels with value 0 correspond to locations where the translated template exactly fits inside image X , pixels
with value 1 are the locations where the template fits inside a dilation of size 1 of X , etc. Second, looking
at this map as a grayscale image, a number of techniques can now be used to extract its local minima, which
provide us with the location of the local best matches of the template. In addition, the same method can be
used with TC and XC , thereby providing a map of the matches between template complement and image
complement.
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We can one step further: to improve the “granularity” of this metric and speed up the algorithm signifi-
cantly, we propose to use an asymmetric distance function in equation (17). Instead of defining it based on
a 3� 3 structuring element B, use a 2� 2 square with the center of the structuring element at the upper-left.
Using S for distance functions has two main advantages:

� The distance function based on S can be computed in a single raster-order pass through image X

instead of the 2-passes required by traditional distance functions. See [14] for more details on this
asymmetric distance and its use in fast morphological algorithms.

� The granularity of Hausdorff distance measurements is improved by a factor of 2. In the “match map”
obtained through application of equation (17) using this asymmetric distance, all the pixels with an
odd value 2p�1 correspond to cases where a dilation with a (2p)�(2p) square provided the Hausdorff
match. Using the distance based on 3� 3 element B, one would not be able to differentiate between
these matches and the lower-quality matches where a dilation by (2p+1)� (2p+1) was required for
the match.

However, one caution in using such a non-symmetric dilation is that the results are shifted by one pixel
with respect to the ones obtained using a symmetric dilation. The left and right frames of Fig. 5 show this
distance function for the two sets in Fig. 2.

Figure 5: Distance function generated from the left and right sets in Fig. 2, respectively
.

Now, distance DBHMT requires taking the maximum of two such directed distances, one computed
for the FG and one for the BG. Because the distance function is asymmetric, the location of the result is
translated to the SouthEast, relative to X , by an amount equal to the distance function itself. Thresholding
DBHMT with some value r generates the identical set as using blur dilation with an r + 1 � r + 1 SE on
BG and FG before the HMT.

This set of relations is illustrated in Fig. 6, which shows the sequence of operations that generate BHMT
distance metrics and BHMT images. We start with the image X and FG and BG templates. Grid spacings
of 2 in x and y directions are used for generating the FG and BG templates. In the FG, the distance function
is found for X , and dilated with the FG template, giving the FG directed distance metric. The dual process
in the BG yields the BG directed distance metric. The maximum of these gives the BHMT* metric, and for
this example it is possible to find a threshold that yields a single match in the BHMT* set. The same result
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can be derived using the threshold individually on the FG and BG metrics, and AND-ing the result. With the
threshold chosen, it should be noted that the thresholded FG metric yields matches in two locations, one of
which is between the template and the “g” in the image. This match was not seen in the BG, which removed
it from the BHMT. Details of the BHMT* metric are shown in Fig. 7.

In the general case, one would choose different threshold values (blur SEs) in FG and BG, in order to
make the matching process more robust. This is the difference between the BHMT and the BHMT*. When
an asymmetric distance function is used, which is analogous to the use of different asymmetric SEs for FG
and BG blur, the thresholded binary images, which have different translations of the match with respect to
the image, must be re-aligned before being AND-ed.

3 Efficient implementations

Our interest is in finding relatively efficient implementations of the BHMT that are effective at locating
matches without a large number of false positives. For character recognition, for example, the purpose is
not to use the best possible pattern matchers, such as those used to estimate probabilities for templates in a
maximum likelihood calculation[7]. Instead, we might want information that is good enough to be used as
a heuristic for narrowing the search space for more computationally-intensive methods that do a better job
of identifying characters. The rank operations, such as the rank BHMT, are less efficient than the BHMT
because they require two (integer) convolutions by SEs, followed by thresholding. The BHMT uses only
boolean operations.

We now give two approaches to the efficient use of the BHMT for identifying text characters in an image
given a template.

3.1 Subsampled BHMT

To improve the efficiency in a direct implementation of the BHMT, it is possible to

� Scale down both image and template. Because we match all template pixels at each image position,
the total number of pixels to be matched varies as the fourth power of the scaling parameter. The
actual reduction in computation will be between the second power and the fourth power, depending
on the implementation.

� Subsample the template. Suppose each template is subsampled by imposing a regular grid, with
subsampling factors nx and ny. This has two effects. First, it decreases the computation required. The
reduction varies from approximately ny to the product nx � ny, depending on the implementation.
The second effect is that the subsampling tends to reduce the overall template dimensions, effectively
augmenting the blur in the image.

The template can also be subsampled by choosing a random subset of template pixels, rather than a rect-
angular grid, but for a given number of template pixels chosen, the matching is significantly more accurate
when a rectangular grid is chosen. Results using rectangular subsampled gridding of the template are given
in Sec. 4, where it will be seen that some choices of subsampling greatly improve the results.

The first step is to perform the blur dilations on both the FG and BG of the image. This can then be used
for a multiplicity of templates. The BHMT can be implemented in several ways. For fully parallel methods,
each erosion can be formed separately by the usual set of translations and ANDs, where the unit of operation
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original image

template

FG template BG template

background image

foreground metric background metric

BHMT metric*

BHMT*

threshold
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distance function

dilation dilation
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BHMT

distance function

threshold threshold

Figure 6: Sequence of operations that generate BHMT distance metrics and BHMT im-
ages.
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Figure 7: Detail of BHMT* metric for example in Fig. 6

can be anything from the pixel to the entire image. The BHMT results by taking the intersection of the FG
and BG results.

Matches of a template to a character in the image typically succeed at more than one (x; y) location. So
that we do not over-count the matches, after the BHMT it is necessary to identify the matches by labelling
the 8-connected components in the image. For the sparse BHMT images, this is relatively fast compared to
the BHMT itself.

3.2 Truncated BHMT

There is another implementation of the BHMT that is faster, somewhat serialized, and largely circumvents
the labelling process itself. The idea is to truncate the matching process in each location at the first instance
of failure. Each template can be composed of an array of words, with each word representing the pixels
in a template row. Suppose both FG and BG templates are to be tested at some location (x,y). Choose the
FG template and align its first row with the image to test for a match. (The test requires only three boolean
operations: AND between template and image; XOR between this result and the template; test for 0.) If a
line match is found, proceed to the next template row. Whenever a line match is not found, quit the process
at (x,y) and move to the next image location. If a full FG match is found, repeat with the BG template. If
both matches succeed, record the location (the labelling process).

Matches to a single image feature typically occur contiguously within some region that is comparable
to or smaller than the blur size. The serial aspect is required to avoid recording multiple positions for
an image feature that has already been matched. When a match occurs, move several pixels away before
looking for the next match. For the same reason, when scanning successive image lines, it is useful to avoid
regions where a match was found proximally on lines above. Truncation of the matching process reduces
the computation time by a factor proportional to the number of lines in the FG and BG templates that have
ON pixels.

The rank BHMT defined earlier in the paper can provide a finer control over the matching. The approach
described in the previous paragraph also provides an efficient implementation of the rank BHMT. Rather than
testing for zero, count the ON pixels in the template line that are OFF in the image. Accumulate this sum
over succesive template lines until either the rank threshold for that template is exceeded or the full template
is matched. Do this for both FG and BG, which generally have different thresholds. As in the BHMT, avoid
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searching for matches in the vicinity of any location where a full match has already been found.
The efficiency of the truncated approach to the BHMT can be estimated within a factor of two or so,

depending on implementation details and the hardware. For most locations of the template(s), the match
will fail on the first line, requiring about 10 machine instructions (MIs). Suppose on average that 20 MIs
are required for each (x; y) location. A 400 MIPS machine can then match 20 million positions/second. For
a document image where the vertical location of text baselines is known within �2 pixels, and where the
textline width is 2000 pixels, matches are required at 10,000 positions for each textline. For a full page with
50 textlines, the matching time is about 25 milliseconds.

3.3 Use of truncated rank BHMT

The matching operation of the rank BHMT, performed in a truncated fashion and only on a small subset
of image locations, can be used to build an efficient JBIG2 encoder for binary images. JBIG2 is a lossy
encoding where similarly-shaped connected components are replaced by a single representative template
and a set of locations in the image where this template is to appear. The JBIG2 standard specifies the file
format, but not the encoding method.

The basis of the JBIG2 encoder is an unsupervised clustering procedure, including the shape-matching
algorithm. Consider a two-pass method, where the image is pre-segmented into 8-connected components.
In the first pass, each component is examined sequentially to determine if it is sufficiently similar to the
representative of an existing class, and if not, it becomes the representative of a new class. The comparison
is done using a truncated version of the rank BHMT, where both the template and the image component
to be compared are of comparable size. To reduce computation, it is preferable to evaluate the match at
just one relative location of template and image. This location can be chosen by aligning the centroids of
the two images[10]. With the rank BHMT, the FG and BG of the image are dilated and the FG and BG of
each template of similar dimensions are tested in a truncated way, as described in Sec. 3.2. Two thresholds,
for FG and BG outliers, are set for each template. A template is considered to match an image component
if both the FG and BG outliers fall below their thresholds. If more than one template matches an image
component, the one with the smallest number of outlier pixels (i.e., the best fit) should be used.

Once the initial clustering is made, the instances within each cluster are combined, by again aligning
the centroids, to make a less noisy template. These templates are then used for the second pass. All image
components are sequentially compared with the new templates, and the best fit is chosen. If an image
component does not match any template, it is used as the template for a new class, as in the first pass. The
amount of image distortion, produced by the substitution of the templates for each instance in the class, is
controlled by the blur size and the thresholds. The advantage of the rank BHMT over the rank Hausdorff is
evidenced in the second pass, where the template noise is much less than the noise in the image components.
As we have seen previously, small salt and pepper noise in the image components is removed by the dilations,
so the thresholds can be set lower for rank BHMT than for rank Hausdorff.

4 Illustrative results for BHMT

In this section, the use of the BHMT for matching image characters is briefly explored. A number of
parameters can be varied independently: the FG and BG blur of the image, the x and y grid subsampling of
the template, and scale reduction of both image and template.

To demonstrate the effect of blur and template gridding, an instance of the character “a” is chosen at
random from the image at the top of Fig. 9, and is subsampled on a regular grid. A set of 25 gridded
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Figure 8: Gridded FG templates, for (nx, ny) varying from (1,1) in the upper-left tem-
plate to (5,5) in the lower-right template. Grid spacingnx increases to right;
ny increases downward.
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Figure 9: Top: Example image. Bottom: characters matched by the BHMT for the tem-
plates in Fig. 8 (and the BG templates as well) have been highlighted.
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Blur 2,2 Blur 3,3 Blur 4,4 Blur 2,4 Blur 2,5 Blur 4,2
nx ny nmiss nfp nmiss nfp nmiss nfp nmiss nfp nmiss nfs nmiss nfp
1 1 84 0 19 0 4 0 8 0 4 0 83 0
1 2 80 0 10 0 0 32 1 0 1 0 77 0
1 3 71 0 16 0 4 0 6 0 2 0 68 0
1 4 65 0 16 0 4 1 4 0 0 0 64 0
2 1 80 0 5 0 0 1 0 0 0 0 79 0
2 2 70 0 1 1 0 74 0 0 0 0 69 0
2 3 54 0 4 0 0 11 0 0 0 0 53 0
2 4 46 0 4 0 0 54 0 0 0 0 46 0
3 1 65 0 1 0 0 15 3 0 3 0 61 0
3 2 47 0 0 0 2 130 0 0 0 0 43 0
3 3 55 0 0 1 0 150 0 0 0 5 51 0
3 4 14 0 0 31 13 328 0 0 0 33 14 16
4 1 39 0 0 0 - - 4 0 4 0 34 0
4 2 0 0 0 32 - - 0 0 0 3 0 168
4 3 16 0 0 21 - - 1 0 1 6 9 100
4 4 1 0 6 193 - - 0 0 1 45 11 609

Table 1: Use of BHMT to identify 88 instances of the character “a”, using a templated
derived by subsampling one of those instances. For text of this size and thick-
ness, the most stable region for matches is with with parameters near FG and
BG blurs(�f ; �b) = (2; 4) and and grid spacings(nx; ny) = (2; 2). For each
set of FG/BG blurs, the numbers of misses and false positives are given for
different grid spacings.

FG templates is shown in Fig. 8, where the nx subsampling increases to the right (from 1 to 5), and the ny
subsampling increases downward. There is another set (not shown) for the BG templates. In the upper image
in Fig. 9, there are 88 instances of the character “a”. These are highlighted in the bottom image, having been
identified by a BHMT using the blur parameters (�f ; �b) = (2; 4) and grid spacings (nx; ny) = (2; 2). With
this combination, as with several others, all instances were identified and no false positives were found.

Results for five combinations of FG/BG blur factors and sixteen grid subsamplings are shown in Table 1.
For each blur factor pair, the numbers of misses and false positives are given. For example, the two columns
labeled “Blur2,4” used (�f ; �b) = (2; 4). With strict matching parameters (fine gridding, small dilation)
there are no false positives and a significant number of misses. A few false positives are seen for Blur3,3,
particularly for larger nx. With Blur4,4, the number of false positives is significantly increased; this amount
of dilation removes the differentiation of the “a”s from other similar characters. A few intermediate combi-
nations succeeded in finding all occurrences without any false positives. As seen from Table 1, the optimal
working region is near the parameters (�f ; �b) = (2; 4) and (nx; ny) = (2; 2).

When FG and BG blur are not equal, there is an asymmetry in the results. Table 1 shows particular
combinations, where the BG blur is larger than the FG blur, that give good matches. When FG blur is larger,
as for Blur4,2, there are typically more misses and more false positives. The asymmetry exists because the
image has large solid white areas that can give false positive matches to all BG templates; consequently,
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excessive FG dilation contributes significantly to these errors.
When matching multiple characters in a font and size, an optimum pair of FG and BG blur SEs can be

chosen, and the template grid spacings can be individually optimized for each character, including use of
different grid spacings for FG and BG templates. The BHMT exhibits significant immunity to random noise.
For example, when random noise at the one percent level shown in (b) of Fig. 2 is added to the image, the
numbers of missed and false positive characters from the BHMT are not significantly changed. The BHMT
is typically more computationally efficient with coarser grid spacing, particularly in the y-direction.

5 Summary

Translationally invariant methods for pattern matching in scanned document images have no dependencies
on pixel connectedness in either the image or template. We have focused on the most efficient techniques,
that require only boolean operations. The basic operation, the HMT (which should be called the Hit-And-
Miss transform!), is maximally sensitive to noise in bothFG and BG.

Fortunately, there are ways to increase the noise immunity of the HMT. For extensions that use only
boolean operations (as opposed to linear convolution and rank order filters), and considering the nature of
binary pixel noise in both images and templates, we have argued that the BHMT is the best choice.

Considerable attention was devoted to distance metrics that can be derived from (special cases of) the
BHMT. We began with the well-known relation between the Hausdorff metric and blurred template matches,
and derived similar metrics for the BHMT. This distance provides a measure of the goodness of fit of the
template at every location in the image. Comparing the Hausdorff and BHMT mechanisms of action on
noisy document images, we showed why (1) the bi-directional symmetry of Hausdorff is problematic and
(2) the uni-directional but FG/BG-symmetric BHMT provides immunity to both boundary and random pixel
noise. An intuitive presentation of these differences is a primary goal of this paper.

We also showed how the BHMT* metric can be derived in the grayscale regime starting with distance
functions for the FG and BG image. For most sensitivity, we choose an 8-connected asymmetric function
that is generated in one raster scan and increments the distance to the South and East. These distance
functions are then dilated with the FG and BG templates, and combined using the pixelwise Max operator.

The BHMT is useful for binary document image pattern matching tasks. We have shown the results of
an experiment on pattern matching for characters, to illustrate the effects of FG and BG blur, and of regular
subsamplings of the templates. Regular gridding of the templates gives far better results than using random
subsets, for the same number of elements chosen. We also discussed methods for truncating the matches;
this is much more efficient than using full erosions at every location. These truncation methods are also
applicable to rank operations, which can be designed to have fewer matching failures than the BHMT itself.
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